全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Life under Supernovae. Story of the Cordillera Pine Forest

DOI: 10.4236/ojg.2019.98026, PP. 395-403

Keywords: Supernova, Bristlecone Pine Trees, Cordillera, Plant Response, Ozone Layer Depletion

Full-Text   Cite this paper   Add to My Lib

Abstract:

The article presents the first direct evidence of the influence of supernova flashes on the biosphere. Geochemistry and paleontology have not yet provided convincing data on the life response to disasters in the Milky Way Galaxy. This gap was eliminated through tree ring analysis of bristlecone pine from the Cordilleras responded to seven supernova outbursts in 185-1604 AD. The author used the superposed epoch method to process data at the 11 longest dendrochronologies, based on the results of measurement of annual growth of about 300 trees. The main finding is the growth depression in high-mountain population caused by supernova outbursts lasted for 20 - 30 years after the event. Moreover, in most cases, drastic growth reduction occurred one year prior to the event. In some cases, the annual tree ring increment exceeded the normal range many years after the event, and, consequently, it could be concluded that plant response was associated with the ozone layer depletion.

References

[1]  Schindewolf, O.H. (1950) Grundfragen der Palaontologie. Geologische Zeitmessung, Organische Stammesentwicklung, Biologische Systematic. Schweizerbart’sche Verlagsbuchhandlung, Stuttgart, 1-506.
[2]  Thomas, B.C., Melott, A.L., Jackman, C.H., Laird, C.M., Medvedev, M.V., Stolarski, R.S., Gehrels, N., Cannizzo, J.K., Hogan, D.P. and Ejzak, L.M. (2005) Gamma-Ray Bursts and the Earth: Exploration of Atmospheric, Biological, Climatic, and Biogeochemical Effects. Astrophysical Journal, 634, 509-533.
https://doi.org/10.1086/496914
[3]  Thomas, B.C. and Honeyman, M.D. (2008) Amphibian Nitrate Stress as an Additional Terrestrial Threat from Astrophysical Ionizing Radiation Events? Astrobiology, 8, 731-733.
https://doi.org/10.1089/ast.2007.0262
[4]  Melott, A.L. and Thomas, B.C. (2009) Late Ordovician Geographic Patterns of Extinction Compared with Simulations of Astrophysical Ionizing Radiation Damage. Paleobiology, 35, 311-320.
https://doi.org/10.1666/0094-8373-35.3.311
[5]  Svensmark, H. (2012) Evidence of Nearby Supernovae Affecting Life on Earth. Monthly Notices of the Royal Astronomical Society, 423, 1234-1253.
https://doi.org/10.1111/j.1365-2966.2012.20953.x
[6]  Horvath, J.E. and Galante, D. (2012) Effects of High-Energy Astrophysical Events on Habitable Planets. International Journal of Astrobiology, 11, 279-286.
https://doi.org/10.1017/S1473550412000304
[7]  Thomas, B.C., Neale, P.J. and Snyder II, B.R. (2015) Solar Irradiance Changes & Photobiological Effects at Earth’s Surface Following Astrophysical Ionizing Radiation Events. Astrobiology, 15, 207-220.
https://doi.org/10.1089/ast.2014.1224
[8]  Neale, P.J. and Thomas, B.C. (2016) Solar Irradiance Changes and Phytoplankton Productivity in Earth’s Ocean Following Astrophysical Ionizing Radiation Events. Astrobiology, 16, 245-258.
https://doi.org/10.1089/ast.2015.1360
[9]  Thomas, B.C., Engler, E.E., Kachelrieß, M., Melott, A.L., Overholt, A.C. and Semikoz, D.V. (2016) Terrestrial Effects of Nearby Supernovae in the Early Pleistocene. Astrophysical Journal Letters, 826, L3.
https://doi.org/10.3847/2041-8205/826/1/L3
[10]  Thomas, B.C., Goracke, B.D. and Dalton, S.M. (2016) Atmospheric Constituents and Surface-Level UVB: Implications for a Paleoaltimetry Proxy and Attempts to Reconstruct UV Exposure during Volcanic Episodes. Earth and Planetary Science Letters, 453, 141-151.
https://doi.org/10.1016/j.epsl.2016.08.014
[11]  Melott, A.L., Thomas, B.C., Kachelrieß, M., Semikoz, D.V. and Overholt, A.C. (2017) A Supernova at 50 Pc: Effects on the Earth’s Atmosphere and Biota. Astrophysical Journal, 840, 105.
https://doi.org/10.3847/1538-4357/aa6c57
[12]  Thomas, B.C. (2017) Photobiological Effects at Earth’s Surface Following a 50 pc Supernova. Astrobiology, 18, 481-490.
https://doi.org/10.1089/ast.2017.1730
[13]  Astro2020 Science (2019) White Paper Near-Earth Supernova Explosions: Evidence, Implications, and Opportunities. Submitted to: The 2020 Decadal Survey on Astronomy and Astrophysics U.S. National Academies of Sciences, Engineering, and Medicine Committee on Astronomy and Astrophysics, 11 p.
[14]  Konstantinov, B.P. and Kocharov, G.E. (1965) Astrophysical Phenomena and Radiocarbon. AN USSR Reports. (In Russian)
[15]  Lovelius, N.V. (1974) On Possibility of Impact Assessment of Supernova Explosion on the Tree Growth. Botanical Journal, No. 7, 992-994. (In Russian)
[16]  Kocharov, G.E., Dergachev, V.A., Sementsov, A.A., Romanova, E.N., Rumyantsev, S.A. and Malanova, N.S. (1974) Concentration of Radiocarbon in Tree Rings 1564-1583, 1593-1615, 1688-1712. Proceedings of the 5th Conference on Astrophysical Phenomena and Radiocarbon, Tbilisi, 4-6 October 1973, 47-60. (In Russian)
[17]  Beer, J., Andrée, M., Oeschger, H., Stauffer, B., Balzer, R., Bonani, G., Stoller, C., Suter, M., Woelfli, W. and Finkel, R.C. (1983) Temporal 10Be Variations in Ice. Radiocarbon, 25, 269-278.
https://doi.org/10.1017/S0033822200005579
[18]  Kocharov, G.E. (1982) Burst of Cosmic Radiation and Cosmogenic Isotopes. In: Kocharov, G.E., Ed., Integrated Investigation of the Sun, Ioffe Physical-Technical Institute, Leningrad, 203-207. (In Russian)
[19]  Konstantinov, A.N. and Kocharov, G.E. (1984) A 30,000 Year Record of the Cosmic-Ray Intensity. Pis’ma Astronomichesky Zhurnal, 10, 94-97. (In Russian)
[20]  Sonett, C.P., Morfill, G.E. and Jokipii, J.R. (1987) Interstellar Shock Waves and 10/BE from Ice Cores. Nature, 330, 458.
https://doi.org/10.1038/330458a0
[21]  Konstantinov, A.N., Kocharov, G.E. and Levchenko, V.A. (1990) On the Supernova Explosion 35 ky Ago. Pis’ma Astronomichesky Zhurnal, 16, 799-803. (In Russian)
[22]  Knie, K., Korschinek, G., Faestermann, T., Wallner, C., Scholten, J. and Hillebrandt, W. (1999) Indication for Supernova Produced 60Fe Activity on Earth. Physical Review Letters, 83, 18.
https://doi.org/10.1103/PhysRevLett.83.18
[23]  Fimiani, L., Cook, D.L., Faestermann, T., Gómez-Guzmán, J.M., Hain, K., Herzog, G., Knie, K., Korschinek, G., Ludwig, P., Park, J., Reedy, R.C. and Rugel, G. (2016) Interstellar 60Fe on the Surface of the Moon. Physical Review Letters, 116, Article ID: 151104.
https://doi.org/10.1103/PhysRevLett.116.151104
[24]  Breitschwerdt, D., Feige, J., Schulreich, M.M., Avillez, M.A., Dettbarn, C. and Fuchs, B. (2016) The Locations of Recent Supernovae near the Sun from Modelling 60Fe Transport. Nature, 532, 73-76.
https://doi.org/10.1038/nature17424
[25]  Wallner, A., Feige, J., Kinoshita, N., Paul, M., Fifield, L.K., Golser, R., Honda, M., Linnemann, U., Matsuzaki, H., Merchel, S., Rugel, G., Tims, S.G., Steier, P., Yamagata, T. and Winkler, S.R. (2016) Recent Near-Earth Supernovae Probed by Global Deposition of Interstellar Radioactive 60Fe. Nature, 532, 69-72.
https://doi.org/10.1038/nature17196
[26]  Dengel, S., Aeby, D. and Grace, J. (2009) A Relationship between Galactic Cosmic Radiation and Tree Rings. New Phytologist, 184, 545-551.
https://doi.org/10.1111/j.1469-8137.2009.03026.x
[27]  Chu, S.-I. (1968) Supernovae from Ancient Korean Observational Records. Journal of the Korean Astronomical Society, 1, 29-36.
[28]  Clark, D.H. and Stephenson, F.R. (1977) The Historical Supernovae. Pergamon Press, Oxford, New York.
[29]  Stephenson, F.R. and Clark, D.H. (1976) Historical Supernovae. Scientific American, 234, 100-107.
https://doi.org/10.1038/scientificamerican0676-100
[30]  Stephenson, F.R. and Green, D.A. (2003) A Millennium of Shattered Stars—Our Galaxy’s Historical Supernovae. Sky and Telescope, 105, 40-48.
[31]  Stephenson, F.R. and Green, D.A. (2005) A Reappraisal of Some Proposed Historical Supernovae. Journal for the History of Astronomy, 36, 217-229.
https://doi.org/10.1177/002182860503600204
[32]  Zhao, F.-Y., Strom, R.G. and Jiang, S.-Y. (2006) The Guest Star of AD185 Must Have Been a Supernova. Chinese Journal of Astronomy and Astrophysics, 6, 635-640.
https://doi.org/10.1088/1009-9271/6/5/17
[33]  Chree, C. (1913) Some Phenomena of Sunspots and of Terrestrial Magnetism at Kew Observatory. Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character, 212, 75-116.
https://doi.org/10.1098/rsta.1913.0003
[34]  Shapiro, A.I., Schmutz, W., Rozanov, E., Schoell, M., Haberreiter, M., Shapiro, A.V. and Nyeki, S. (2011) A New Approach to Long-Term Reconstruction of the Solar Irradiance Leads to Large Historical Solar Forcing. Astronomy & Astrophysics, 529, A67.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133