The
airborne pollutants monitoring is an overriding task for humanity given that
poor quality of air is a matter of public health, causing issues mainly in the
respiratory and cardiovascular systems, specifically the PM10 particle. In this
contribution is generated a base model with an Adaptive Neuro Fuzzy Inference
System (ANFIS) which is later optimized, using a swarm intelligence technique,
named Bacteria Foraging Optimization Algorithm (BFOA). Several experiments were
carried with BFOA parameters, tuning them to achieve the best configuration of
said parameters that produce an optimized model, demonstrating that way, how
the optimization process is influenced by choice of the parameters.
References
[1]
Yang, X.S., Cui, Z., Xiao, R., Gandomi, A.H. and Karamanoglu, M. (2013) Swarm Intelligence and Bio-Inspired Computation: Theory and Applications.
[2]
Health Effects Institute (2019) State of Global Air 2019. Special Report. Health Effects Institute, Boston.
[3]
Brunekreef, B. and Holgate, S.T. (2002) Air Pollution and Health. The Lancet, 360, 1233-1242. https://doi.org/10.1016/S0140-6736(02)11274-8
[4]
Franklin, B.A., Brook, R. and Pope III, C.A. (2015) Air Pollution and Cardiovascular Disease. Current Problems in Cardiology, 40, 207-238.
https://doi.org/10.1016/j.cpcardiol.2015.01.003
[5]
Kurt, O.K., Zhang, J. and Pinkerton, K.E. (2016) Pulmonary Health Effects of Air Pollution. Current Opinion in Pulmonary Medicine, 22, 138.
https://doi.org/10.1097/MCP.0000000000000248
[6]
Tellez-Rojo, M.M., Romieu, I., Ruiz-Velasco, S., Lezana, M.A. and Hernandez-Avila, M.M. (2000) Daily Respiratory Mortality and PM10 Pollution in Mexico City: Importance of Considering Place of Death. European Respiratory Journal, 16, 391-396. https://doi.org/10.1034/j.1399-3003.2000.016003391.x
[7]
Cortina-Januchs, M.G., Quintanilla-Dominguez, J., Vega-Corona, A. and Andina, D. (2015) Development of a Model for Forecasting of PM10 Concentrations in Salamanca, Mexico. Atmospheric Pollution Research, 6, 626-634.
https://doi.org/10.5094/APR.2015.071
[8]
Moustris, K.P., Ziomas, I.C. and Paliatsos, A.G. (2010) 3-Day-Ahead Forecasting of Regional Pollution Index for the Pollutants NO2, CO, SO2, and O3 Using Artificial Neural Networks in Athens, Greece. Water, Air and Soil Pollution, 209, 29-43.
https://doi.org/10.1007/s11270-009-0179-5
[9]
Alkasassbeh, M., Sheta, A.F., Faris, H. and Turabieh, H. (2013) Prediction of PM10 and TSP Air Pollution Parameters Using Artificial Neural Network Autoregressive, External Input Models: A Case Study in Salt, Jordan. Middle-East Journal of Scientific Research, 14, 999-1009.
[10]
Zarandi, M., Faraji, M. and Karbasian, M. (2012) Interval Type-2 Fuzzy Expert System for Prediction of Carbon Monoxide Concentration in Mega-Cities. Applied Soft Computing, 12, 291-301. https://doi.org/10.1016/j.asoc.2011.08.043
[11]
Aceves-Fernandez, M.A., Estrada, A.L., Pedraza-Ortega, J.C., Gorrostieta-Hurtado, E. and Tovar-Arriaga, S. (2015) Design and Implementation of Ant Colony Algorithms to Enhance Airborne Pollution Models. International Journal of Environmental Science and Technology, 3, 22-28.
[12]
Martinez-Zeron, E., Aceves-Fernandez, M.A., Gorrostieta-Hurtado, E., Sotomayor-Olmedo, A. and Ramos-Arreguín, J.M. (2014) Method to Improve Airborne Pollution Forecasting by Using Ant Colony Optimization and Neuro-Fuzzy Algorithms. International Journal of Intelligence Science, 4, 81.
https://doi.org/10.4236/ijis.2014.44010
[13]
Ordónez-De León, B., Aceves-Fernandez, M.A., Fernandez-Fraga, S.M., Ramos-Arreguín, J.M. and Gorrostieta-Hurtado, E. (2019) An Improved Particle Swarm Optimization (PSO): Method to Enhance Modeling of Airborne Particulate Matter (PM10). Evolving Systems, 1-10.
https://doi.org/10.1007/s12530-019-09263-y
[14]
Beni, G. and Wang, J. (1993) Swarm Intelligence in Cellular Robotic Systems. In: Robots and Biological Systems: Towards a New Bionics, Springer, Berlin, Heidelberg, 703-712. https://doi.org/10.1007/978-3-642-58069-7_38
[15]
Dorigo, M., Maniezzo, V. and Colorni, A. (1996) Ant System: Optimization by a Colony of Cooperating Agents. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 26, 29-41. https://doi.org/10.1109/3477.484436
[16]
Karaboga, D. (2005) An Idea Based on Honeybee Swarm for Numerical Optimization (Vol. 200). Technical Report tr06, Erciyes University, Engineering Faculty, Computer-Engineering Department, Kayseri.
[17]
Hosseini, H.S. (2007) Problem Solving by Intelligent Water Drops. IEEE Congress on Evolutionary Computation, Singapore, 25-28 September 2007, 3226-3231.
[18]
Yang, X.S. (2010) A New Metaheuristic Bat-Inspired Algorithm. In: Nature Inspired Cooperative Strategies for Optimization, Springer, Berlin, Heidelberg, 65-74.
https://doi.org/10.1007/978-3-642-12538-6_6
[19]
Hedayatzadeh, R., Salmassi, F.A., Keshtgari, M., Akbari, R. and Ziarati, K. (2010) Termite Colony Optimization: A Novel Approach for Optimizing Continuous Problems. 18th Iranian Conference on Electrical Engineering, Isfahan, 11-13 May 2010, 553-558. https://doi.org/10.1109/IRANIANCEE.2010.5507009
[20]
Passino, K.M. (2002) Biomimicry of Bacterial Foraging for Distributed Optimization and Control. IEEE Control Systems Magazine, 22, 52-67.
https://doi.org/10.1109/MCS.2002.1004010
[21]
Tripathy, M. and Mishra, S. (2007) Bacteria Foraging-Based Solution to Optimize Both Real Power Loss and Voltage Stability Limit. IEEE Transactions on Power Systems, 22, 240-248. https://doi.org/10.1109/TPWRS.2006.887968
[22]
Das, S., Biswas, A., Dasgupta, S. and Abraham, A. (2009) Bacterial Foraging Optimization Algorithm: Theoretical Foundations, Analysis, and Applications. In: Foundations of Computational Intelligence, Volume 3, Springer, Berlin, Heidelberg, 23-55. https://doi.org/10.1007/978-3-642-01085-9_2
[23]
Ali, E.S. and Abd-Elazim, S.M. (2013) BFOA Based Design of PID Controller for Two Area Load Frequency Control with Nonlinearities. International Journal of Electrical Power & Energy Systems, 51, 224-231.
https://doi.org/10.1016/j.ijepes.2013.02.030
[24]
Wu, C., Zhang, N., Jiang, J., Yang, J. and Liang, Y. (2007) Improved Bacterial Foraging Algorithms and Their Applications to Job Shop Scheduling Problems. In: International Conference on Adaptive and Natural Computing Algorithms, Springer, Berlin, Heidelberg, 562-569. https://doi.org/10.1007/978-3-540-71618-1_62
[25]
Mahapatra, G. and Banerjee, S. (2013) A Study of Bacterial Foraging Optimization Algorithm and Its Applications to Solve Simultaneous Equations. International Journal of Computer Applications, 72, 1-6. https://doi.org/10.5120/12487-7927
[26]
Chen, Y.P., Li, Y., Wang, G., Zheng, Y.F., Xu, Q., Fan, J.H. and Cui, X.T. (2017) A Novel Bacterial Foraging Optimization Algorithm for Feature Selection. Expert Systems with Applications, 83, 1-17. https://doi.org/10.1016/j.eswa.2017.04.019
[27]
Narendhar, S. and Amudha, T. (2012) A Hybrid Bacterial Foraging Algorithm for Solving Job Shop Scheduling Problems.
[28]
Abd-Elazim, S.M. and Ali, E.S. (2013) A Hybrid Particle Swarm Optimization and Bacterial Foraging for Optimal Power System Stabilizers Design. International Journal of Electrical Power & Energy Systems, 46, 334-341.
https://doi.org/10.1016/j.ijepes.2012.10.047
[29]
Azizipanah-Abarghooee, R. (2013) A New Hybrid Bacterial Foraging and Simplified Swarm Optimization Algorithm for Practical Optimal Dynamic Load Dispatch. International Journal of Electrical Power & Energy Systems, 49, 414-429.
https://doi.org/10.1016/j.ijepes.2013.01.013
[30]
Sistema de Monitoreo Atmosférico (SIMAT) El monitoreo de la calidad del aire.
http://www.aire.cdmx.gob.mx/default.php?opc=%27ZaBhnmI=%27
[31]
Red de Meteorología y Radiación Solar, REDMET.
http://www.aire.cdmx.gob.mx/default.php?opc=%27aKBi%27
[32]
Angelov, P. (1994) A Generalized Approach to Fuzzy Optimization. International Journal of Intelligent Systems, 9, 261-268. https://doi.org/10.1002/int.4550090302
[33]
Angelov, P., Sadeghi-Tehran, P. and Ramezani, R. (2011) An Approach to Automatic Real-Time Novelty Detection, Object Identification, and Tracking in Video Streams Based on Recursive Density Estimation and Evolving Takagi-Sugeno Fuzzy Systems. International Journal of Intelligent Systems, 26, 189-205.
https://doi.org/10.1002/int.20462
[34]
Jang, J.S. (1993) ANFIS: Adaptive-Network-Based Fuzzy Inference System. IEEE Transactions on Systems, Man, and Cybernetics, 23, 665-685.
https://doi.org/10.1109/21.256541
[35]
Angelov, P. and Kasabov, N. (2005) Evolving Computational Intelligence Systems. Proceedings of the 1st International Workshop on Genetic Fuzzy Systems, Granada, 17-19 March 2005, 76-82.
[36]
Abdulshahed, A.M., Longstaff, A.P. and Fletcher, S. (2015) The Application of ANFIS Prediction Models for Thermal Error Compensation on CNC Machine Tools. Applied Soft Computing, 27, 158-168.
https://doi.org/10.1016/j.asoc.2014.11.012
[37]
Hansen, C.H., Endres, R.G. and Wingreen, N.S. (2008) Chemotaxis in Escherichia coli: A Molecular Model for Robust Precise Adaptation. PLoS Computational Biology, 4, e1. https://doi.org/10.1371/journal.pcbi.0040001
[38]
Brabazon, A. and McGarraghy, S. (2018) Foraging-Inspired Optimization Algorithms. Springer, Berlin. https://doi.org/10.1007/978-3-319-59156-8
[39]
Hyndman, R.J. and Koehler, A.B. (2006) Another Look at Measures of Forecast Accuracy. International Journal of Forecasting, 22, 679-688.
https://doi.org/10.1016/j.ijforecast.2006.03.001
[40]
Panda, S., Mohanty, B. and Hota, P.K. (2013) Hybrid BFOA-PSO Algorithm for Automatic Generation Control of Linear and Nonlinear Interconnected Power Systems. Applied Soft Computing, 13, 4718-4730.
https://doi.org/10.1016/j.asoc.2013.07.021