This study presents a parameter selection strategy developed for the Stretch-Blow Molding (SBM) process to minimize the weight of preforms used. The method is based on a predictive model developed using Neural Networks. The temperature distribution model of the preform was predicted using a 3-layer NN model with supervised backpropagation learning. In addition, the model was used to predict the uniform air pressure applied inside the preform, taking into account the relationship between the internal air pressure and the volume of the preform. Parameters were validated using in situ tests and measurements performed on several weights and lengths of a 0.330 Liter Polyethylene Terephthalate (PET) bottles. Tests showed that the model adequately predicts both the blowing kinematics, mainly zone temperatures and blowing and stretching pressures along the walls of the bottle while maintaining the bottle strength and top load requirements. In the second step, the model was combined to automatically compute the lowest preform weight that can be used for a particular 330 ml bottle design providing a uniform wall thickness distribution.
References
[1]
Brandau, O. (2012) Stretch Blow Molding. Elsevier, Cambridge, MA.
[2]
Luersen, M.A. and Le Riche, R. (2002) Globalized Nelder-Mead Method for Engineering Optimization. Proceedings of the Third International Conference on Engineering Computational Technology, Stirling, Scotland, 165.
[3]
Michaeli, W. and Papst, W. (2004) FE-Analysis of the Two-Step Stretch Blow Molding Process. SPE ANTEC Technical Papers 30, Chicago, IL.
[4]
Champin, C., Bellet, M., Schmidt, F.M., Agassant, J.-F. and Le Maoult, Y. (2005) 3D Finite Element Modeling of the Blow Molding Process. 8th ESAFORM Conference on Material Forming, Cluj-Napoca, Romania, 905-908.
[5]
Bordival, M., Schmidt, F.M., Le Maoult, Y. and Velay, V. (2009) Optimization of Preform Temperature Distribution for the Stretch-Blow Molding of PET Bottles: Infrared Heating and Blowing Modeling. Polymer Engineering and Science, 49, 783-793. https://doi.org/10.1002/pen.21296
[6]
Venkateswaran, G., Cameron, M.R. and Jabarin, C.A. (1998) Optimization of Preform Temperature Distribution for the Stretch-Blow Molding of PET Bottles: Infrared Heating and Blowing Modeling. Advances in Polymer Technology, 17, 237-249.
https://doi.org/10.1002/(SICI)1098-2329(199823)17:3<237::AID-ADV4>3.3.CO;2-P
[7]
Martin, L., Stracovsky, D., Laroche, D., Bardetti, A., Ben Yedder, R. and DiRaddo, R. (1999) Modeling and Experimental Validation of the Stretch Blow Molding of PET. SPE ANTEC Technical Papers, New York.
[8]
Bordival, M., Schmidt, F.M. and Le Maoult, Y. (2006) Numerical Modeling and Optimization of Infrared Heating System for the Blow Molding Process. 9th ESAFORM Conference on Material Forming, Glasgow, April 2006, 511-514.
[9]
Pham, X.T., Thibault, F. and Lim, L.T. (2004) Modeling and Simulation of Stretch Blow Molding of Polyethylene Terephthalate. Polymer Engineering and Science, 44, 1460-1472. https://doi.org/10.1002/pen.20142
[10]
Yang, Z.J., Harkin-Jones, E., Armstrong, C.G. and Menary, G.H. (1996) Finite Element Modelling of Stretch-Blow Molding of PET Bottles Using Buckley Model: Plant Tests and Effects of Process Conditions and Material Parameters. Proceedings of the Institution of Mechanical Engineers Part E: Journal of Process Mechanical Engineering, 218, 237-250. https://doi.org/10.1243/0954408042466990
[11]
Bagherzadeh, S., Biglari, F.R. and Nikbin, K. (2010) Parameter Study of Stretch-Blow Moulding Process of Polyethylene Terephthalate Bottles Using Finite Element Simulation. Proceedings of the Institution of Mechanical Engineers Part B: Journal of Engineering Manufacture, 224, 1217-1227.
https://doi.org/10.1243/09544054JEM1853
[12]
Chettiar, D., Masood, S.H. and Erbulut, D.U. (2008) Optimization of a PET Preform Design for Better Bottle Barrier Properties. Proceedings of ANTEC Society of Plastic Engineers, 4, 1947-1951.
[13]
Thibault, F., Malo, A., Lanctot, B. and Diraddo, R. (2007) Preform Shape and Operating Condition Optimization for the Stretch Blow Molding Process. Polymer Engineering and Science, 47, 289-301. https://doi.org/10.1002/pen.20707
[14]
Menary, G. (2001) Modeling of Injection Stretch Blow Molding and the Resulting in-Service Performance of PET Bottles. Ph.D. Thesis, Queen’s University of Belfast, Belfast.
[15]
Bonnebat, C., Roullet, G. and de Vries, A.J. (2004) Biaxially Oriented Polyethylene Terephthalate Bottles: Effects of Resin Molecular Weight on Stretching Behavior. Polymer Engineering & Science, 21, 189-195.
https://doi.org/10.1002/pen.760210403
[16]
Attaway, S. (2002) MATLAB: A Practical Introduction to Programming and Problem.
[17]
Neural Planner Software (2011) Neural Planner Software Ltd., Version 3.
[18]
Modest, M. (1993) Radiative Heat Transfer, McGraw-Hill, New York.
[19]
Incropera, F.P. (1985) Fundamentals of Heat and Mass Transfer. Wiley, New York, 546.
[20]
Zilouchian, A. and Bawazeer, K. (1997) Prediction of Products Quality of a Crude Fractionation Section of an Oil Refinery Using Neural Networks. Proceedings of International Conference on Neural Networks, Houston, TX, 12-12 June 1997, 157-162.
[21]
Haykin, S. (1994) Neural Networks: A Comprehensive Foundation. Macmillan College Publishing, London.
[22]
Widrow, B. and Lehr, M.A. (1990) 30 Years of Adaptive Neural Networks: Perceptron, Madline, and Backpropagation. Proceedings of the IEEE, 78, 1415-1442.
https://doi.org/10.1109/5.58323
[23]
Rumelhart, D.E., Hinton, G.E. and Williarns, R.J. (1986) Learning Internal Representations by Error Propagation. The MIT Press, Cambridge, MA.
[24]
Wasserman, P.D. (1993) Advanced Methods in Neural Computing. Van Nostrand Reinhold, New York.
[25]
Zilouchian, A. and Hamano, F. (1997) Recent Trends and Industrial Applications of Intelligent Control Systems Using Artificial Neural Networks and Fuzzy Logic. In: Tzafestas S.G., Ed., Methods and Applications of Intelligent Controls, Kluwer Academic Publishers, Dordrecht. https://doi.org/10.1007/978-94-011-5498-7_3
[26]
Luo, Z. (1991) On the Convergence of the LMS Algorithm with Adaptive Learning Rate for Linear Feed-Forward Networks. Neural Computation, 3, 226-245.
https://doi.org/10.1162/neco.1991.3.2.226
[27]
Moody, J. and Darken, C. (1989) Fast Learning in Networks of Locally-Tuned Processing Units. Neural Computation, 1, 281-294.
https://doi.org/10.1162/neco.1989.1.2.281
[28]
Hagan, M.T. and Menhaj, M. (1994) Training Feed-Forward Networks with the Marquardt Algorithm. IEEE Transactions on Neural Networks, 5, 989-993.
https://doi.org/10.1109/72.329697
[29]
Nguyen, D. and Widrow, B. (1990) Improving the Learning Speed of 2-Layer Neural Networks by Choosing Initial Values of the Adaptive Weights. Proceedings of the International Joint Conference on Neural Networks, 3, 21-26.
[30]
Lee, Y.C. and Kim, M. (1991) The Effects of Initial Weights on Premature Saturation in Back-Propagation Learning. International Joint Conference on Neural Networks, 1, 765-770.