Estimation of the Impact of Climate Change on Water Resources Using a Deterministic Distributed Hydrological Model in C?te d’Ivoire: Case of the Aghien Lagoon
This work aims to evaluate the
impact of climate change on the quantitative availability of the Aghien lagoon
located in the north of the Abidjan district in Cô
;te d’Ivoire. In the first step, the
semi-distributed SWAT (Soil and Water Assessment Tools) based physical model(Arnold et al., 1998) was calibrated and validated at the monthly time step over the period
1960-1981, in the Me watershed for which data from flow rates are available.SWAT was then applied on the watershed of the lagoon of Aghien which is
ungauged but for which the challenges are considerable for the drinking water
supply of the Abidjanese population. In the second step, the gross outputs (precipitation, temperatures) of six
climate models of the CORDEX-Africa project under the “Representative
Concentration Pathways” (RCP 4.5 and RCP 8.5) scenarios were corrected using
the delta method.These corrected outputs were
used at the SWAT model input to project the impact of climate change on the
flow of the Aghien lagoon to horizons 2040 (2035-2056), 2060 (2057-2078) and
2080 (2079-2100).The projections made on
these different horizons were compared with the simulated flow over the period
1960-1981. The results show a sensible decrease in the annual flow of the Aghien
lagoon compared to the reference period (1960-1981). Under the medium
assumption (RCP 4.5), the models predict a decrease in the annual discharge
almost 10% on average. Under the pessimistic hypothesis (RCP 8.5), the average
annual discharge should decrease by more than 17%. On a monthly basis, flows in
August and September
References
[1]
Abdelkrim, B. S. (2013). Vulnérabilité et Adaptation Aux Changements Climatiques Dans les Oasis de la Région de Taflalet-Maroc. Ph.D. Thesis, Marrakecsh, Maroc: Université Cadi Ayyad.
[2]
Anoh, K. A. (2014). Apport d’un SIG et du modèle agrohydrologique SWAT dans la gestion durable des ressources en eaux du bassin versant du lac de Taabo (centre de la Côte d’Ivoire). Thèse de Doctorat en Sciences de la Terre, option Hydrogéologie, Abidjan, Côte d'Ivoire: Université Félix Houphouët Boigny de Cocody Abidjan.
[3]
Ardoin-Bardin, S. (2004). Variabilité hydroclimatique et impacts sur les ressources en eau de grands bassins hydrographiques en zone soudano-sahélienne. Thèse de Doctorat, Montpellier: l’Université de Montpellier II.
[4]
Arnold, J. G., Srinivasan, R., & Williams, J. R. (1998). Large Area Hydrologic Modeling Assessment: Part 1 Model Development. Journal of the Américan Water Resources Association, 34, 73-89. https://doi.org/10.1111/j.1752-1688.1998.tb05961.x
[5]
Atchade (2004). Impacts de la dynamique du climat et de l’occupation des terres sur les ressources en eau du bassin versant de la rivière zou dans le Benin méridional. Thèse de Doctorat unique, Benin: Géoscience de l’Environnement et Aménagement de l’Espace, Université d’Abomey-Calavi.
[6]
Baker, N. C., & Huang, H. P. (2013). A Comparative Study of Precipitation and Evaporation between CMIP3 and CMIP5 Climate Model Ensembles in Semiarid Regions. Journal of Climate, 27, 3731-3749. https://doi.org/10.1175/JCLI-D-13-00398.1
[7]
Biao, E. I. (2017). Assessing the Impacts of Climate Change on River Discharge Dynamics in Oueme River Basin (Benin, West Africa). Hydrology, 4, 47. https://doi.org/10.3390/hydrology4040047
[8]
Déqué, M. (2010). Regional Climate Simulation with a Mosaic of RCMs. Meteorologische Zeitschrift, 19, 259-266. https://doi.org/10.1127/0941-2948/2010/0455
[9]
Ducharne, A., Théry, S., Viennot, P., Ledoux, E., Gomez, E., & Déqué, M. (2003). Infuence du changement climatique sur l’hydrologie du bassin de la Seine. VertigO, 4, 40. https://doi.org/10.4000/vertigo.3845
[10]
Dufresne, J. L., Foujols, M. A., Denvil, S., Caubel, A., Marti, O., Aumont, O., Balkanski, Y., & Bekki, S. (2013). Climate Change Projections Using the IPSL-CM5 Earth System Model: From CMIP3 to CMIP5. Climate Dynamics, 40, 2123-2165. https://doi.org/10.1007/s00382-012-1636-1
[11]
Ehouman, S. K., Amidou, D., Djibril, D., Noufé, B., Kamagate, B., Koffi, J., Thierry, K., Seydou, D., & Droh, L. G. (2017). Bilan des apports liquides des rivières Bété et Djibi à la lagune aghien (Côte d’Ivoire). American Journal of Innovative Research and Applied Sciences, 6, 86-99.
[12]
Goula, B. T. A., Savané, I., Konan, B., Fadika, V., & Kouadio, G. B. (2006). Impact de la variabilité climatique sur les ressources hydriques des bassins de N’Zo et N’Zi en Côte d’Ivoire (Afrique tropicale humide). VertigO, la revue électronique en sciences de l’environnement, 7, 1-12. https://doi.org/10.4000/vertigo.2038
[13]
Jacob, D., Bärring, L., Christensen, O. B., Christensen, J. H., Hagemann, S., Hirschi, M., Kjellström, E., Lenderink, G., Rockel, B., Schär, C., Seneviratne, S. I., Somot, S., van Ulden, A., & van den Hurk, B. (2007). An Inter-Comparison of Regional Climate Models for Europe: Design of the Experiments and Model Performance. Climate Change, 81, 31-52. https://doi.org/10.1007/s10584-006-9213-4
[14]
Koua, T. J. (2014). Apport de la modélisation hydrologique et des systèmes d’information géographique (SIG) dans l’étude du transfert des polluants et des impacts climatiques sur les ressources en eau: cas du bassin versant du lac de Buyo (Sud-ouest de la Côte d’Ivoire). Thèse de Doctorat en Sciences de la Terre, option Hydrogéologie, Abidjan, Côte d’Ivoire: Université Félix Houphouët Boigny de Cocody Abidjan.
[15]
Kouakou, K. E., Goula, B. T. A., & Kouassi, A. M. (2012). Analyze of Climate Variability and Change Impacts on Hydro-Climate Parameters: Case Study of Côte d’Ivoire. International Journal of Scientific and Engineering Research, 3, 1-8.
[16]
Mbaye, M. L., Hagemann, S., Haensler, A., Stacke, T., Gaye, A. T., & Afouda, A. (2015). Assessment of Climate Change Impact on Water Resources in the Upper Senegal Basin (West Africa). American Journal of Climate Change, 4, 77-93. https://doi.org/10.4236/ajcc.2015.41008
[17]
Miao, C. Y., Duan, Q. Y., Sun, Q. H., Huang, Y., Kong, D. X., Yang, T. T., Ye, A. Z., Di, Z. H., & Gong, W. (2014). Assessment of CMIP5 Climate Models and Projected Temperature Changes over Northern Eurasia (pp. 1-13). State Key Laboratory of Earth Surface Processes and Resource Ecology, College of Global Change and Earth System Science, Beijing Normal University, Beijing.
[18]
N’Dri, W. K. C., Séverin, P., Jourda, J. P., & Kouamé, K. J. (2019). Application of SWAT to Estimate Water Balance in the Aghien Lagoon Basin, South-East of Côte d’Ivoire. International Journal of Science and Research, 8, 10.
[19]
Neitsch, S. L., Arnold, J. G., Kiniry, J. R., & Williams, J. R. (2005). Soil and Water Assessment Tool Theoretical Documentation, Version 2005. Grassland, Soil and Water Research Laboratory: Agricultural Research Service.
[20]
Ogden, F. L., Garbrecht, J., DeBarry, P. A., & Johnson, L. E., (2001). GIS and Distributed Watershed Models. II: Modules, Interfaces, and Models. Journal of Hydrologic Engineering, 6, 515-523. https://doi.org/10.1061/(ASCE)1084-0699(2001)6:6(515)
[21]
Paturel, J. E. (2014). Exercice de scénarisation hydrologique en Afrique de l’Ouest: Bassin du Bani. Hydrological Sciences Journal, 59, 1135-1153. https://doi.org/10.1080/02626667.2013.834340
[22]
Reynolds, C. A., Jackson, T. J., & Rawls, W. J. (1999). Estimating Available Water Content by Linking the FAO Soil Map of the World with Global Soil Profile Database and Pedo-Transfer Functions. Water Resources Research, 36, 3653-3662. https://doi.org/10.1029/2000WR900130
[23]
Riahi, K., Rao, S., Krey, V., Cho, C., Chirkov, V., Guenther, F., Georg, K., Nakicenovic, N., & Rafaj, P. (2011). RCP 8.5-A Scenario of Comparatively High Greenhouse Gas Emissions. Climatic Change, 109, 33. https://doi.org/10.1007/s10584-011-0149-y
[24]
Sabrina, T. F. (2015). Influence de la circulation atmosphérique générale sur les précipitations du Nord de l’Algérie. Thèse de Doctorat, Algérie: de l’école Nationale Supérieure d’Hydraulique.
[25]
Santhi, C., Arnold, J. G., Williams, J. R., Dugas, W. A., Srinivasan, R., & Hauck, L. M. (2001). Validation of the SWAT Model on a Large River Basin with Point and Nonpoint Sources. Journal of the American Water Resources Association, 37, 1169-1188. https://doi.org/10.1111/j.1752-1688.2001.tb03630.x
[26]
Scinocca, J. F., McFarlane, N. A., Lazare, M. L. J., & Plummer, D. (2008). Technical Note: The CCCma Third Generation AGCM and Its Extension into the Middle Atmosphere. Atmospheric Chemistry and Physics Impact, 8, 7055-7074. https://doi.org/10.5194/acp-8-7055-2008
[27]
Servat, E., Paturel, J. E., Kouamé, B., Travaglio, M., Ouedraogo, M., Boyer, J. F., Lubès-Niel, H., Fritsch, J. M., Masson, J. M., & Marieu, B. (1998). Identification, caractérisation et conséquences d’une variabilité hydrologique en Afrique de l’Ouest et Centrale. International Association of Hydrological Sciences Journal, 252, 323-337.
[28]
Soro, G. E., Yao, A. B., Kouamé, Y. M., & Goula, B. T. A. (2017). Climate Change and Its Impacts on Water. Resources in the Bandama Basin, Côte d’Ivoire. Hydrology, 4, 18. https://doi.org/10.3390/hydrology4010018
[29]
Van Vuuren, D., Edmonds, J., Kainuma, M., Riahi, K., Thomson, A., Hibbard, K., Hurtt, G., Kram, T., Krey, V., & Lamarque, J. F. (2011). The Representative Concentration Pathways: An Overview. Climatic Change, 109, 5-31. https://doi.org/10.1007/s10584-011-0148-z