全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于蜻蜓算法的改进研究
Study on Improvement of Dragonfly Algorithm

DOI: 10.12677/CSA.2019.97155, PP. 1377-1386

Keywords: 蜻蜓算法,非线性函数,灰狼机制,末位淘汰
Dragonfly Algorithm
, Nonlinear Function, Grey Wolf Mechanism, Lowliest Place Elimination Series

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对标准蜻蜓算法中存在的收敛速度慢,易于局部解的缺点,提出一种改进的蜻蜓算法(IDA)。该算法提出两种非线性函数,分别动态调节列队权重和聚集权重的收敛因子,提高算法平衡全局搜索和局部开发的能力;灰狼机制有较强的局部开发能力和收敛速度,融合灰狼机制以提高蜻蜓算法的收敛精度和速度;算法迭代后期种群多样性下降,引入末位淘汰策略来提高种群的多样性,使算法跳出局部解。通过6个复杂的测试函数对改进算法进行仿真,并和其他三个算法进行对比。结果表明,IDA算法的收敛精度、收敛速度和稳定性都优于其他三个算法。
An improved dragonfly algorithm (IDA) was proposed to overcome the disadvantages of the standard dragonfly algorithm, such as slow convergence rate and easy to be trapped in local solutions. In order to improve the ability of balancing exploration and exploitation, IDA algorithm proposes two kinds of nonlinear function that can dynamically adjust the convergence factors of the alignment weight and cohesion weight. Grey Wolf mechanism has good performance in exploitation and rate of convergence. In order to improve the convergence accuracy and speed of the dragonfly algorithm, the grey Wolf mechanism was incorporated into the dragonfly algorithm. In the late iteration of the algorithm, the diversity of the population decreases, which makes the algorithm easy to fall into the local solution. The lowliest place elimination series is introduced to improve the diversity of the population and make the algorithm jump out of the local solution. The improved algorithm is simulated with six complex functions and compared with the other three algorithms. The results show that the convergence accuracy, convergence speed and stability of IDA algorithm are better than the other three algorithms.

References

[1]  Mirjalili, S. (2016) Dragonfly Algorithm: A New Meta-Heuristic Optimization Technique for Solving Single-Objective, Discrete, and Multi-Objective Problems. Neural Computing and Applications, 27, 1053-1073.
https://doi.org/10.1007/s00521-015-1920-1
[2]  Xu, L., Jia, H., Lang, C., et al. (2019) A Novel Method for Multilevel Color Image Segmentation Based on Dragonfly Algorithm and Differential Evolution. IEEE Access.
https://doi.org/10.1109/ACCESS.2019.2896673
[3]  Abdel-Basset, M., Luo, Q., Miao, F., et al. (2017) Solving 0-1 Knapsack Problems by Binary Dragonfly Algorithm. In: International Conference on Intelligent Computing, Springer, Cham, 491-502.
https://doi.org/10.1007/978-3-319-63315-2_43
[4]  Suresh, V. and Sreejith, S. (2017) Generation Dispatch of Combined Solar Thermal Systems Using Dragonfly Algorithm. Computing, 99, 59-80.
https://doi.org/10.1007/s00607-016-0514-9
[5]  Babayigit, B. (2017) Synthesis of Concentric Circular Antenna Arrays Using Dragonfly Algorithm. International Journal of Electronics, 105, 784-793.
https://doi.org/10.1080/00207217.2017.1407964
[6]  Jafari, M. and Bayati Chaleshtari, M.H. (2017) Using Dragonfly Algorithm for Optimization of Orthotropic Infinite Plates with a Quasi-Triangular Cut-Out. European Journal of Mechanics A/Solids, 66, 1-14.
https://doi.org/10.1016/j.euromechsol.2017.06.003
[7]  Amroune, M., Bouktir, T. and Musirin, I. (2018) Power System Voltage Stability Assessment Using a Hybrid Approach Combining Dragonfly Optimization Algorithm and Support Vector Regression. Ara-bian Journal for Science & Engineering, 43, 3023-3036.
https://doi.org/10.1007/s13369-017-3046-5
[8]  Raman, G., Manickam, C., et al. (2016) Dragonfly Algorithm Based Global Maximum Power Point Tracker for Photovoltaic Systems. Advances in Swarm Intelligence, Springer International Publishing, Berlin.
https://doi.org/10.1007/978-3-319-41000-5_21
[9]  Sree, R.K.S. and Murugan, S. (2017) Memory Based Hybrid Dragonfly for Numerical Optimization Problems. Expert Systems with Application, 83, 63-78.
https://doi.org/10.1016/j.eswa.2017.04.033
[10]  Zawbaa, H.M., Emary, E., Salam, M.A., et al. (2016) A Hybrid Dragonfly Al-gorithm with Extreme Learning Machine for Prediction. International Symposium on Innovations in Intelligent Systems and Applica-tions, Sinaia, 2-5 August 2016.
[11]  Ismail, S.G., Alaa, T. and Ella, H.A. (2018) Chaotic Dragonfly Algorithm: An Improved Me-taheuristic Algorithm for Feature Selection. Applied Intelligence, 49, 188-205.
[12]  吴伟民, 吴汪洋, 林志毅, 李泽熊, 方典禹. 基于增强个体信息交流的蜻蜓算法[J]. 计算机工程与应用, 2017, 53(4): 10-14.
[13]  Reynolds, C.W. (1987) Flocks, Herds, and Schools: A Distributed Behavioral Model. ACM, New York.
https://doi.org/10.1145/37401.37406
[14]  Mirjalili, S., Mirjalili, S.M. and Lewis, A. (2014) Grey Wolf Optimizer. Advances in Engineering Software, 69, 46-61.
https://doi.org/10.1016/j.advengsoft.2013.12.007
[15]  Malik, M.R.S., Mohideen, E.R. and Ali, L. (2016) Weighted Distance Grey Wolf Optimizer for Global Optimization Problems. IEEE International Conference on Computational Intelligence & Computing Research, Madurai, 10-12 December 2015.
https://doi.org/10.1109/ICCIC.2015.7435714
[16]  Long, W., Liang, X., Cai, S., et al. (2016) A Modified Augmented Lagrangian with Improved Grey Wolf Optimization to Constrained Optimization Problems. Neural Computing and Applications, 28, 1-18.
https://doi.org/10.1007/s00521-016-2357-x
[17]  Zhang, S., Luo, Q. and Zhou, Y. (2017) Hybrid Grey Wolf Optimizer Using Elite Opposition-Based Learning Strategy and Simplex Method. International Journal of Computational Intelligence and Applications, 16, Article ID: 1750012.
https://doi.org/10.1142/S1469026817500122
[18]  鲍义东, 夏栋梁, 赵伟艇. 基于凸策略优胜劣汰蚁群算法的机器人路径规划[J]. 计算机系统应用, 2015, 24(8): 122-127.
[19]  赵齐辉, 杜兆宏, 刘升, 陈思静. 差分进化的蜻蜓算法[J]. 微电子学与计算机, 2018, 35(7): 101-105.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133