全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

疏水载体SDB制备方法的正交优化设计
Orthogonal Design of the Hydrophobic Catalyst Carrier SDB

DOI: 10.12677/NST.2019.73016, PP. 114-122

Keywords: SDB疏水载体,迟滞回线,孔结构
SDB Hydrophobic Carrier
, Hysteresis Loop, Pore Structure

Full-Text   Cite this paper   Add to My Lib

Abstract:

通过线性实验与正交实验探讨了交联剂用量、致孔剂用量及致孔剂种类三个因素对疏水催化剂载体SDB的孔径、比表面积及硬度的影响。结合氮气等温吸脱附曲线的迟滞回线与SEM形貌结果分析了SDB载体的孔结构。结果表明,使用非良溶剂作为致孔剂时,随致孔剂分子量而增加,SDB的孔径同步增大而硬度明显降低;高DVB用量有利于获得均匀的孔结构及较高的机械强度,但孔径偏小。致孔剂类型与用量对SDB的疏水性的影响大于交联剂用量对其的影响,这表明微观结构对SDB的疏水性有着更为直接的影响。部分SDB表层的孔径小于内部,存在着瓶颈结构。
Through linear experiments and orthogonal experiment, the influence of three factors on the pore size, specific surface and hardness of hydrophobic catalyst carrier SDB was discussed, including the amount of crosslinking agent, porogen and the type of porogen. Based on the hysteresis loop of N2 isothermal adsorption-desorption curve and surface morphology, the pore structure of the catalyst support was analyzed. The result shows that the higher crosslinking agent amount is beneficial to obtain uniform pore structure and higher mechanical strength, but the pore size is smaller. The influence of the type and amount of the porogen on the hydrophobicity of the carrier is greater than that of the crosslinking agent, which indicates that the microstructure has a more direct influence on the hydrophobicity of the carrier. The pore size of the partial carrier surface is smaller than that of the interior, indicating the presence of bottleneck structures.

References

[1]  马尔科夫. 深冷法分离重氢[M]. 北京: 中国工业出版社, 1964.
[2]  Butler, J.P. (1980) Hydrogen Isotope Separation by Cata-lyzed Exchange between Hydrogen and Liquid Water. Separation Science & Technology, 15, 371-396.
https://doi.org/10.1080/01496398008068488
[3]  Asakura, Y., Kikuchi, M. and Yusa, H. (1982) New Method for the Hydrogen Isotope Exchange Reaction in a Hydrophobic Catalyst Bed [McCabe-Thiele Diagram]. Nuclear Science and Engineering (United States), 80, 184-189.
https://doi.org/10.13182/NSE82-A21415
[4]  Choi, H.J., Han, S.L., Ahn, D.H., et al. (2005) Deactivation of Hydrophobic Catalysts for a Hydrogen Isotope Exchange: Application of the Time-on-Stream Theory. Annals of Nuclear Energy, 32, 1337-1347.
https://doi.org/10.1016/j.anucene.2005.03.012
[5]  Iwai, Y., Edao, Y., Asahara, H., et al. (2016) Development of Hydrophobic Platinum Catalyst for Oxidation of Tritium in JAEA. Nuclear Materials & Energy, 9, 267-272.
https://doi.org/10.1016/j.nme.2016.08.018
[6]  Perevezentsev, A., Andreev, B.M., Magomedbekov, E.P., et al. (2002) Difference in HETP and HTU for Isotopic Mixtures of Protium-Tritium and Protium-Deuterium in Isotopic Exchange between Water and Hydrogen on Hydrophobic Catalyst. Fusion Science & Technology, 41, 1107-1111.
https://doi.org/10.13182/FST02-A22755
[7]  Paek, S., Ahn, D.H., Kim, K.R., et al. (2007) Evaluation of the Effective Diffusivities of HD and HDO in a Pt/SDBC Catalyst Pellet. Journal of Industrial & Engineering Chemistry, 13, 121-126.
[8]  Popescu, I., Ionita, G., Stefanescu, I., et al. (2005) A New Hydrophobic Catalyst for Tritium Separation from Nuclear Effluents. Fusion Science & Technology, 48, 108-111.
https://doi.org/10.13182/FST05-41
[9]  Hu, S., Hou, J., Xiong, L., et al. (2011) Hydrophobic Pt Catalysts with Different Carbon Substrates for the Interphase Hydrogen Isotope Separation. Separation & Purification Technology, 77, 214-219.
https://doi.org/10.1016/j.seppur.2010.12.008
[10]  Popescu, I., Ionita, G., Stefanescu, I., et al. (2008) Improved Characteristics of Hydrophobic Polytetrafluoroethylene-Platinum Catalysts for Tritium Recovery from Tritiated Water. Fusion Engineering & Design, 83, 1392-1394.
https://doi.org/10.1016/j.fusengdes.2008.05.026
[11]  Ye, L., Luo, D., Wan, Y., et al. (2014) Preparation and Characterization of Hydrophobic Carbon-Supported Pt 3 M (M = Fe, Co, Ni and Cr) Bimetals for H/D Isotope Separation between Hydrogen and Water. International Journal of Hydrogen Energy, 39, 13793-13799.
https://doi.org/10.1016/j.ijhydene.2014.04.029
[12]  Sohn, S.H. and Lee, K.J. (2006) Deactivation of Hydrophobic Pt/SDBC Catalyst in the WTRF LPCE Column for Tritium Separation. Journal of Nuclear Science & Technology, 43, 874-883.
https://doi.org/10.1080/18811248.2006.9711172
[13]  Iwai, Y., Sato, K. and Yamanishi, T. (2010) Development of Pt/ASDBC Catalyst Applicable for Hydrogen Oxidation in the Presence of Saturated Water Vapor at Room Temperature. Journal of Plasma and Fusion Research Series, 9, 332-337.
[14]  Kawakami, K., Isobe, M., Horiki, K., et al. (1988) Kinetic Study of Isotopic Exchange Reaction between Hydrogen and Water Vapor over a Pt/SDBC Hydrophobic Catalyst Sheet. Canadian Journal of Chemical Engineering, 66, 338-342.
https://doi.org/10.1002/cjce.5450660225
[15]  缑可贞. 大粒径SDB疏水催化剂载体的合成及性能研究[D]: [硕士学位论文]. 绵阳: 西南科技大学, 2014.
[16]  Shimizu, R., Nibe, A., Sawada, K., et al. (2008) Preparation of Hydrophobic Platinum Catalysts Using a Water-in-CO2, Microemulsion. Journal of Supercritical Fluids, 44, 109-114.
https://doi.org/10.1016/j.supflu.2007.07.024
[17]  许越. 催化剂设计与制备工艺[M]. 北京: 化学工业出版社, 2003.
[18]  潘祖仁. 悬浮聚合[M]. 北京: 化学工业出版社, 1997.
[19]  钱庭宝, 等. 吸附树脂及其应用[M]. 北京: 化学工业出版社, 1990.
[20]  江雷. 从自然到仿生的超疏水纳米界面材料[J]. 化工进展, 2003, 22(12): 1258-1264.
[21]  胡友根, 周志平, 盛维琛. 多孔苯乙烯-二乙烯基苯共聚物的制备与孔结构[J]. 高分子材料科学与工程, 2010, 26(11): 71-74.
[22]  Chungt, H., Kang, H.S., Paek, S.W., et al. (1998) Development of a Polymer Catalyst for HANARO Detritiation.
[23]  缑可贞, 刘才林, 杨海君, 等. DVB用量对SDB结构和Pt/SDB催化性能影响研究[J]. 原子能科学技术, 2015(1): 13-18.
[24]  张东方, 信颖. 中药现代分离技术[M]. 沈阳: 辽宁大学出版社, 2006: 23-25.
[25]  Zeynali, M.E. (2011) Investigation of the Effect of Diffusion Process in the Catalyst Pellet on Overall Reaction Rate of Dehydrogenation of Diethylbenzne to Divinylbenzne. Defect and Diffusion Forum, 312-315, 7-12.
https://doi.org/10.4028/www.scientific.net/DDF.312-315.7
[26]  Iwai, Y., Sato, K. and Yamanishi, T. (2011) Development of Pt/ASDBC Catalyst for Room Temperature Recombiner of Atmosphere Detritiation System. Fusion Engineering & Design, 86, 2164-2167.
https://doi.org/10.1016/j.fusengdes.2011.04.028
[27]  陈安伏, 黄汉雄, 关伟盛. 超疏水高分子材料表面的微结构设计及其可调的黏附性[J]. 高分子学报, 2015(3): 245-251.
[28]  Sing, K.S.W. (1985) Reporting Physisorption Data for Gas/Solid Systems with Special Reference to the Determination of Surface Area and Porosity (Recommendations 1984). Pure & Applied Chemistry, 57, 603-619.
https://doi.org/10.1351/pac198557040603
[29]  Avnir, D., Everett, D.H., Fairbridge, C., et al. (1994) Characterization of Porous Solids III. Pure & Applied Chemistry, 66, 1739-1758.
https://doi.org/10.1351/pac199466081739
[30]  And, F.S.M. and Sherrington, D.C. (2004) Control of Porous Morphology in Suspension Polymerized Poly(divinylbenzene) Resins Using Oligomeric Porogens. Macromolecules, 37, 7628-7636.
https://doi.org/10.1021/ma0491053

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133