|
工件具有相似加工时长时两台机上LPT算法的性能分析
|
Abstract:
[1] | Graham, R.L. (1969) Bounds on Multiprocessing Timing Anomalies. SIAM Journal on Applied Mathematics, 17, 416-429. https://doi.org/10.1137/0117039 |
[2] | Graham, R.L. (1976) Bounds on the Performance of Scheduling Algorithms. In: Coffmann, E.G., Ed., Computer and Job-Shop Scheduling Theory, John Wiley Sons, New York, 165-227. |
[3] | Cheng, T.C.E., Kellerer, H. and Kotov, V. (2012) Algorithms Better than LPT for Semi-Online Schedul-ing with Decreasing Processing Times. Operations Research Letters, 40, 349-352. https://doi.org/10.1016/j.orl.2012.05.009 |
[4] | He, Y. and Dòsa, G. (2005) Semi-Online Scheduling Jobs with Tightly-Grouped Processing Times on Three Identical Machines. Discrete Applied Mathematics, 150, 140-159. https://doi.org/10.1016/j.dam.2004.12.005 |
[5] | He, Y. and Zhang, G. (1999) Semi On-Line Scheduling on Two Identical Machines. Computing, 62, 179-187.
https://doi.org/10.1007/s006070050020 |
[6] | Kellerer, H., Kotov, V., Speranza, M.G. and Tuza, Z. (1997) Semi On-Line Algorithms for the Partition Problem. Operations Research Letters, 21, 235-242. https://doi.org/10.1016/S0167-6377(98)00005-4 |
[7] | Li, R.H. and Huang, H.C. (2007) List Scheduling for Jobs with Arbitrary Release Times and Similar Lengths. Journal of Scheduling, 10, 365-373. https://doi.org/10.1007/s10951-007-0042-8 |
[8] | Lin, L. and Tan, Z. (2014) Inefficiency of Nash Equilibrium for Scheduling Games with Constrained Jobs: A Parametric Analysis. Theoretical Computer Science, 521, 123-134. https://doi.org/10.1016/j.tcs.2013.11.012 |
[9] | He, Y. and Zhang, G. (1999) Semi On-Line Scheduling on Two Identical Machines. Computing, 62, 179-187.
https://doi.org/10.1007/s006070050020 |
[10] | Kellerer, H. (1991) Bounds for Non-Preemptive Scheduling Jobs with Similar Processing Times on Multiprocessor Systems Using LPT-Algorithm. Computing, 46, 183-191. https://doi.org/10.1007/BF02238297 |