|
microRNA-29a对肥大心肌细胞细胞周期的影响研究
|
Abstract:
[1] | Shimizu, I. and Minamino, T. (2016) Physiological and Pathological Cardiac Hypertrophy. Journal of Molecular and Cellular Cardiology, 97, 245-262. https://doi.org/10.1016/j.yjmcc.2016.06.001 |
[2] | Tuomainen, T. and Tavi, P. (2017) The Role of Cardiac Energy Metabolism in Cardiac Hypertrophy and Failure. Experimental Cell Research, 360, 12-18. https://doi.org/10.1016/j.yexcr.2017.03.052 |
[3] | Berkin, K.E. and Ball, S.G. (2001) Essential Hypertension: The Heart and Hypertension. Heart, 86, 467-475.
https://doi.org/10.1136/heart.86.4.467 |
[4] | Cordes, K.R. and Srivastava, D. (2009) MicroRNA Regulation of Cardiovascular Development. Circulation Research, 104, 724-732. https://doi.org/10.1161/CIRCRESAHA.108.192872 |
[5] | Thum, T., et al. (2007) MicroRNAs in the Human Heart: A Clue to Fetal Gene Reprogramming in Heart Failure. Circulation, 116, 258-267. https://doi.org/10.1161/CIRCULATIONAHA.107.687947 |
[6] | Van Rooij, E., et al. (2006) A Signature Pattern of Stress-Responsive microRNAs That Can Evoke Cardiac Hypertrophy and Heart Failure. Proceedings of the National Academy of Sciences of the United States of America, 103, 18255-18260. https://doi.org/10.1073/pnas.0608791103 |
[7] | Zuo, X., et al. (2012) Nicorandil Prevents Right Ventricular Re-modeling by Inhibiting Apoptosis and Lowering Pressure Overload in Rats with Pulmonary Arterial Hypertension. PLoS ONE, 7, e44485.
https://doi.org/10.1371/journal.pone.0044485 |
[8] | Oliveiracarvalho, V., et al. (2013) MicroRNAs: New Players in Heart Failure. Molecular Biology Reports, 40, 2663- 2670. https://doi.org/10.1007/s11033-012-2352-y |
[9] | Van Rooij, E., et al. (2008) Dysregulation of microRNAs after Myocardial Infarction Reveals a Role of miR-29 in Cardiac Fibrosis. Proceedings of the National Academy of Sciences of the United States of America, 105, 13027-13032.
https://doi.org/10.1073/pnas.0805038105 |
[10] | Roncarati, R., et al. (2014) Circulating miR-29a, among Other Up-Regulated MicroRNAs, Is the Only Biomarker for Both Hypertrophy and Fibrosis in Patients with Hypertrophic Cardiomyopathy. Journal of the American College of Cardiology, 63, 920-927. https://doi.org/10.1016/j.jacc.2013.09.041 |
[11] | Wu, Z., et al. (2013) The Inhibitory Role of Mir-29 in Growth of Breast Cancer Cells. Journal of Experimental & Clinical Cancer Research, 32, 98. https://doi.org/10.1186/1756-9966-32-98 |
[12] | Wang, Y., et al. (2013) The Role of miRNA-29 Family in Cancer. European Journal of Cell Biology, 92, 123-128.
https://doi.org/10.1016/j.ejcb.2012.11.004 |
[13] | Cui, Y., et al. (2011) MiR-29a Inhibits Cell Proliferation and In-duces Cell Cycle Arrest through the Downregulation of p42.3 in Human Gastric Cancer. PLoS ONE, 6, e25872. https://doi.org/10.1371/journal.pone.0025872 |
[14] | 宋洋柳. GATA4招募PCG蛋白介导miR-29a表达调控C2C12细胞增殖与分化的机制研究[D]: [硕士学位论文]. 郑州: 郑州大学, 2016. |
[15] | 招霞. PTEN-PI3K-PDK1-Akt信号通路对心脏发育和心脏功能作用的研究[D]: [博士学位论文]. 南京: 南京大学, 2012. |
[16] | 王晓. microRNA-29a在肝癌患者中的表达及对肝癌细胞增殖、迁移能力的研究[D]: [博士学位论文]. 郑州: 郑州大学, 2017. |
[17] | 王慧玲, 等. miR-29a调控HDAC4促肝癌细胞增殖和转移的机制研究[J]. 胃肠病学和肝病学杂志, 2017, 26(4): 381-385. |
[18] | 王慧玲, 等. miR-29a调控IRS1促进肝门部胆管癌细胞增殖的机制研究[J]. 胃肠病学和肝病学杂志, 2019, 28(4): 456-460. |
[19] | Ramdas, V., et al. (2013) Canonical Transforming Growth Factor-Beta Signaling Regulates Disintegrin Metalloprotease Expression in Experimental Renal Fibrosis via miR-29. The American Journal of Pathology, 183, 1885-1896.
https://doi.org/10.1016/j.ajpath.2013.08.027 |
[20] | 李晓, 等. miR-29a调控心肌肥大的分子机制研究[J]. 现代中西医结合杂志, 2017, 26(13): 1379-1381+1385. |
[21] | Yuan, J., et al. (2011) Polo-Box Domain Inhibitor Poloxin Ac-tivates the Spindle Assembly Checkpoint and Inhibits Tumor Growth in Vivo. The American Journal of Pathology, 179, 2091-2099.
https://doi.org/10.1016/j.ajpath.2011.06.031 |
[22] | Kobayashi, Y., et al. (2015) Phase I Trial of Volasertib, a Po-lo-Like Kinase Inhibitor, in Japanese Patients with Acute Myeloid Leukemia. Cancer Science, 106, 1590-1595. https://doi.org/10.1111/cas.12814 |
[23] | Harris, P.S., et al. (2012) Polo-Like Kinase 1 (PLK1) Inhibition Suppresses Cell Growth and Enhances Radiation Sensitivity in Medulloblastoma Cells. BMC Cancer, 12, 80. https://doi.org/10.1186/1471-2407-12-80 |
[24] | Zhang, N., et al. (2016) Cardiac Ankyrin Repeat Protein Attenuates Cardiomyocyte Apoptosis by Upregulation of Bcl-2 Expression. Biochimica et Biophysica Acta, 1863, 3040-3049. https://doi.org/10.1016/j.bbamcr.2016.09.024 |
[25] | Xiong, Y., et al. (2010) Effects of microRNA-29 on Apoptosis, Tumorigenicity, and Prognosis of Hepatocellular Carcinoma. Hepatology, 51, 836-845. https://doi.org/10.1002/hep.23380 |
[26] | Jafarinejad-Farsangi, S., et al. (2015) MicroRNA-29a Induces Apoptosis via Increasing the Bax:Bcl-2 Ratio in Dermal Fibroblasts of Patients with Systemic Sclerosis. Autoimmunity, 48, 369-378.
https://doi.org/10.3109/08916934.2015.1030616 |
[27] | Chaudhry, H.W., et al. (2004) Cyclin A2 Mediates Cardiomyocyte Mitosis in the Postmitotic Myocardium. The Journal of Biological Chemistry, 279, 35858-35866. https://doi.org/10.1074/jbc.M404975200 |
[28] | Anversa, P. and Kajstura, J. (1998) Ventricular Myocytes Are Not Terminally Differentiated in the Adult Mammalian Heart. Circulation Research, 83, 1-14. https://doi.org/10.1161/01.RES.83.1.1 |
[29] | Beltrami, A.P., et al. (2001) Evidence That Human Cardiac Myocytes Divide after Myocardial Infarction. The New England Journal of Medicine, 344, 1750-1757. https://doi.org/10.1056/NEJM200106073442303 |
[30] | Brooks, G., et al. (1997) Expression and Activities of Cy-clins and Cyclin-Dependent Kinases in Developing Rat Ventricular Myocytes. Journal of Molecular and Cellular Car-diology, 29, 2261-2271.
https://doi.org/10.1006/jmcc.1997.0471 |