全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Finance  2019 

基于EGARCH模型下的沪深300指数风险研究
Risk Research of Shanghai and Shenzhen 300 Index Based on EGARCH Model

DOI: 10.12677/FIN.2019.94042, PP. 341-349

Keywords: 沪深300股指,非对称性,EGARCH模型,Shanghai and Shenzhen 300 Stock Index, Asymmetry, EGARCH Model

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文在对沪深300指数基于服从正分布、学生t分布、有偏学生t分布、GED分布的假设,建立EGARCH模型对收益率波动性的杠杆效应进行建模,采用VaR模型进行回溯测试,研究表明,基于GED分布下的波动模型明显优于EGARCH在其他分布下的模型。
In this paper, based on the assumption that the Shanghai and Shenzhen 300 Index is based on pos-itive distribution, student t distribution, biased student t distribution, and GED distribution, the EGARCH model is used to model the leverage effect of yield volatility, and the VaR model is used for backtesting. It is shown that the volatility model based on the GED distribution is significantly better than the EGARCH model under other distributions.

References

[1]  Bollerslev, T. (1986) Generalized Autoregressive Conditional Heteroskedasticity. Journal of Econometrics, 31, 307-327.
https://doi.org/10.1016/0304-4076(86)90063-1
[2]  Engle, R.F. (1982) Autoregressive Conditional He-teroscedasticity with Estimates of the Variance of United Kingdom Inflation. Econometrica: Journal of the Econometric Society, 50, 987-1007.
https://doi.org/10.2307/1912773
[3]  Nelson, D.B. (1991) Conditional Heteroskedasticity in Asset Returns: A New Approach. Econometrica: Journal of the Econometric Society, 59, 347-370.
https://doi.org/10.2307/2938260
[4]  Engle, R.F. and Ng, V.K. (1993) Measuring and Testing the Impact of News on Volatility. The Journal of Finance, 48, 1749-1778.
https://doi.org/10.1111/j.1540-6261.1993.tb05127.x
[5]  Duan, J.C. (1995) The GARCH Option Pricing Model. Mathematical Finance, 5, 13-32.
https://doi.org/10.1111/j.1467-9965.1995.tb00099.x
[6]  Giambastiani, B.M.S. (2007) Evoluzione Idrologica ed Idrogeologica della Pineta di San Vitale (Ravenna). PhD Thesis, Bologna University, Bologna.
[7]  Liu, X., Cheng, S., Wang, S., et al. (2008) An Empirical Study on Information Spillover Effects between the Chinese Copper Futures Market and Spot Market. Physica A: Statistical Mechanics and Its Applications, 387, 899-914.
https://doi.org/10.1016/j.physa.2007.09.044
[8]  Kupiec, P. (1995) Techniques for Verifying the Accuracy of Risk Measurement Models. The Journal of Derivatives, 3, 73-84.
https://doi.org/10.3905/jod.1995.407942
[9]  赖文炜, 陈云. 我国股指期货市场波动的非对称性及其国际比较研究[J]. 商业研究, 2015, 57(5): 73-78.
[10]  姚京, 李仲飞. VaR估计中的模型风险——检验方法与实证研究[J]. 管理评论, 2005, 17(10): 3-7+54-63.
[11]  蒋虹, 曲丹丹. 基于VaR的沪深300股指期货风险管理实证研究[J]. 经济问题, 2008(12): 119-122.
[12]  王美今, 王华. 基于GARCH-t的上海股票市场险值分析[J]. 数量经济技术经济研究, 2002, 19(3): 106-109.
[13]  曹原. 基于t-GARCH模型的风险价值VaR及其在我国股票市场中的实证分析[J]. 理论研究, 2012(2): 108-109

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133