全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Osteoinduction and Osteoconduction with Porous Beta-Tricalcium Phosphate Implanted after Fibular Resection in Humans

DOI: 10.4236/jbnb.2019.103009, PP. 159-173

Keywords: Osteoinduction, Osteoconduction, Beta-Tricalcium Phosphate, Bioactive

Full-Text   Cite this paper   Add to My Lib

Abstract:

Osteoinductive properties of β-TCP remain unknown in humans. It is important to improve the bone grafts which have been the standard treatment for bone defect due to their biocompatibility and bone-healing properties. The purpose of this study was to radiologically clarify the bone forming property of β-TCP by evaluating the replacement of β-TCP by newly formed bone in the defect after fibular resection and to examine the histological features of a β-TCP specimen three months after grafting. Radiographs of 17 patients who underwent β-TCP grafting were evaluated. Osteoinductive and osteoconductive properties were assessed by examining bone formation from the remnant fibula, periosteum, and β-TCP alone. In one case, β-TCP was removed later because of postoperative complications and was evaluated histologically. Twenty two of 34 sites between the remnant fibula and β-TCP had achieved good bone regeneration. Five of 14 sites between the periosteum and β-TCP had achieved good bone regeneration. We found immature but evident bone formation in three cases with no osseous and periosteal sites. Histological analysis revealed bone formation on the outer macropore surface of β-TCP. Some blood vessels formed in the macropores expressed CD31 and CD34, while a few lymphatic vessels expressed CD34 and podoplanin. Thus, the osteoinductive ability of β-TCP alone was demonstrated in humans radiographically for the first time. The histological morphology of β-TCP was demonstrated at an early stage after grafting in humans.

References

[1]  Yamamoto, T., Onga, T., Marui, T. and Mizuno, K. (2000) Use of Hydroxyapatite to Fill Cavities after Excision of Benign Bone Tumours. Clinical Results. Journal of Bone and Joint Surgery British, 82, 1117-1120.
[2]  Uchida, A., Araki, N., Shinto, Y., Yoshikawa, H., Kurisaki, E. and Ono, K. (1990) The Use of Calcium Hydroxyapatite Ceramic in Bone Tumour Surgery. Journal of Bone and Joint Surgery British, 72, 298-302.
https://doi.org/10.1302/0301-620X.72B2.2155908
[3]  Ogose, A., Hotta, T., Hatano, H., Kawashima, H., Tokunaga, K., Endo, N. and Umezu, H. (2002) Histological Examination of Beta-Tricalcium Phosphate Graft in Human Femur. Journal of Biomedical Materials Research, 63, 601-604.
https://doi.org/10.1002/jbm.10380
[4]  Ogose, A., Hotta, T., Kawashima, H., Kondo, N., Gu, W., Kamura, T. and Endo, N. (2005) Comparison of Hydroxyapatite and Beta Tricalcium Phosphate as Bone Substitutes after Excision of Bone Tumors. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 72, 94-101.
https://doi.org/10.1002/jbm.b.30136
[5]  Ogose, A., Kondo, N., Umezu, H., Hotta, T., Kawashima, H., Tokunaga, K., Ito, T., Kudo, N., Hoshino, M., Gu, W. and Endo, N. (2006) Histological Assessment in Grafts of Highly Purified Beta-Tricalcium Phosphate (OSferion) in Human Bones. Biomaterials, 27, 1542-1549.
https://doi.org/10.1016/j.biomaterials.2005.08.034
[6]  Keating, J.F. and McQueen, M.M. (2001) Substitutes for Autologous Bone Graft in Orthopaedic Trauma. Journal of Bone and Joint Surgery British, 83, 3-8.
[7]  Giannoudis, P.V., Dinopoulos, H. and Tsiridis, E. (2005) Bone Substitutes: An Update. Injury, 36, S20-S27.
https://doi.org/10.1016/j.injury.2005.07.029
[8]  Šponer, P., Urban, K., Kučera, T., Kohout, A., Brtková, J. and Knížek, J. (2011) The Use of Interconnected Beta-Tricalcium Phosphate as Bone Substitute after Curettage of Benign Bone Tumours. European Journal of Orthopedic Surgical Traumatology, 21, 235-241.
https://doi.org/10.1007/s00590-010-0701-x
[9]  Kondo, N., Ogose, A., Tokunaga, K., Ito, T., Arai, K., Kudo, N., Inoue, H., Irie, H. and Endo, N. (2005) Bone Formation and Resorption of Highly Purified Beta-Tricalcium Phosphate in the Rat Femoral Condyle. Biomaterials, 26, 5600-5608.
https://doi.org/10.1016/j.biomaterials.2005.02.026
[10]  Kondo, N., Ogose, A., Tokunaga, K., Umezu, H., Arai, K., Kudo, N., Hoshino, M., Inoue, H., Irie, H., Kuroda, K., Mera, H. and Endo, N. (2006) Osteoinduction with Highly Purified Beta Tricalcium Phosphate in Dog Dorsal Muscles and the Proliferation of Osteoclasts before Heterotopic Bone Formation. Biomaterials, 27, 4419-4427.
https://doi.org/10.1016/j.biomaterials.2006.04.016
[11]  Ariizumi, T., Ogose, A., Kondo, N., Kawashima, H., Hotta, T., Kudo, N., Hoshino, M., Inoue, H., Irie, H. and Endo, N. (2013) The Role of Microstructure of Highly Purified Beta-Tricalcium Phosphate for Osteoinduction in Canine Dorsal Muscles. Journal of Biomaterial and Nanobiotechnology, 4, 189-193.
https://doi.org/10.4236/jbnb.2013.42023
[12]  Ozawa, M., Tanaka, K., Morikawa, S., Chazono, M. and Fujii, K. Clinical Study of the Pure Beta-Tricalcium Phosphate-Reports of 167 Cases. Journal of the Eastern Japan Association of Orthopaedics and Traumatology, 12, 409-413.
[13]  Chazono, M., Tanaka, T., Komaki, H. and Fujii, K. (2004) Bone Formation and Bioresorption after Implantation of Injectable Beta-Tricalcium Phosphate Granules-Hyaluronate Complex in Rabbit Bone Defects. Journal of Biomedical Materials Research Part A, 70, 542-549.
https://doi.org/10.1002/jbm.a.30094
[14]  Bodde, E.W., Wolke, J.G., Kowalski, R.S. and Jansen, J.A. (2007) Bone Regeneration of Porous Beta-Tricalcium Phosphate (ConduitTM TCP) and of Biphasic Calcium Phosphate Ceramic (Biosel®) in Trabecular Defects in Sheep. Journal of Biomedical Materials Research Part A, 82, 711-722.
https://doi.org/10.1002/jbm.a.30990
[15]  Daculsi, G. and Layrolle, P. (2004) Osteoinductive Properties of Micro Macroporous Biphasic Calcium Phosphate Bioceramics. Key Engineering Materials, 254-256, 1005-1008.
https://doi.org/10.4028/www.scientific.net/KEM.254-256.1005
[16]  Yamasaki, H. and Sakai, H. (1992) Osteogenic Response to Porous Hydroxyapatite Ceramics under the Skin of Dogs. Biomaterials, 13, 308-312.
https://doi.org/10.1016/0142-9612(92)90054-R
[17]  Ripamonti, U. (1991) Bone Induction in Nonhuman Primates. An Experimental Study on the Baboon. Clinical Orthopaedics and Related Research, 269, 284-294.
https://doi.org/10.1097/00003086-199108000-00039
[18]  Ripamonti, U. (1996) Osteoinduction in Porous Hydroxyapatite Implanted in Heterotopic Sites of Different Animal Models. Biomaterials, 17, 31-35.
https://doi.org/10.1016/0142-9612(96)80752-6
[19]  Yang, Z., Yuan, H., Tong, W., Zou, P., Chen, W. and Zhang, X. (1996) Osteogenesis in Extraskeletally Implanted Porous Calcium Phosphate Ceramics: Variability among Different Kinds of Animals. Biomaterials, 17, 2131-2137.
https://doi.org/10.1016/0142-9612(96)00044-0
[20]  Nihouannen, D.L., Daculsi, G., Saffarzadeh, A., Gauthier, O., Delplace, S., Pilet, P. and Layrolle, P. (2005) Ectopic Bone Formation by Microporous Calcium Phosphate Ceramic Particles in Sheep Muscles. Bone, 36, 1086-1093.
https://doi.org/10.1016/j.bone.2005.02.017
[21]  Anderson, A.F. and Green, N.E. (1991) Residual Functional Deficit after Partial Fibulectomy for Bone Graft. Clinical Orthopaedics and Related Research, 267, 137-140.
https://doi.org/10.1097/00003086-199106000-00019
[22]  Babhulkar, S.S., Pande, K.C. and Babhulkar, S. (1995) Ankle Instability after Fibular Resection. Journal of Bone and Joint Surgery British, 77, 258-261.
https://doi.org/10.1302/0301-620X.77B2.7706342
[23]  Burstone, M.S. (1958) Histochemical Demonstration of Acid Phosphatase with Naphthol AS-Phosphate. Journal of the Natural Cancer Institute, 21, 523-539.
[24]  Amizuka, N., Yamada, M., Watanabe, J., Hoshi, K., Fukushi, M., Oda, K., Ikehara, Y. and Ozawa, H. (1998) Morphological Examination of Bone Synthesis via Direct Administration of Basic Fibroblast Growth Factor into Rat Bone Marrow. Microscopy Research and Technique, 41, 313-322.
https://doi.org/10.1002/(SICI)1097-0029(19980515)41:4<313::AID-JEMT4>3.0.CO;2-R
[25]  Arai, E., Nakashima, H., Tsukushi, S., Shido, Y., Nishida, Y., Yamada, Y., Sugiura, H. and Katagiri, H. (2005) Regenerating the Fibula with Beta-Tricalcium Phosphate Minimizes Morbidity after Fibula Resection. Clinical Orthopaedics and Related Research, 431, 233-237.
https://doi.org/10.1097/01.blo.0000146467.01032.a0
[26]  Stevens, M.M., Marini, R.P., Schaefer, D., Aronson, J., Langer, R. and Shastri V.P. (2005) In Vivo Engineering of Organs: The Bone Bioreactor. Proceeding of the National Academy of Sciences of the United States of America, 102, 11450-11455.
https://doi.org/10.1073/pnas.0504705102
[27]  Cong, Z., Wang, J. and Zhang, X. (2000) Osteoinductivity and Biomechanics of a Porous Ceramic with Autogenic Periosteum. Journal of Biomedical Materials Research, 52, 354-359.
https://doi.org/10.1002/1097-4636(200011)52:2<354::AID-JBM15>3.0.CO;2-D
[28]  Miettinen, M., Lindenmayer, A.E. and Chaubal, A. (1994) Endothelial Cell Markers CD31, CD34, and BNH9 Antibody to H- and Y-Antigens—Evaluation of Their Specificity and Sensitivity in the Diagnosis of Vascular Tumors and Comparison with Von Willebrand Factor. Modern Pathology, 7, 82-90.
[29]  Breiteneder-Geleff, S., Soleiman, A., Kowalski, H., Horvat, R., Amann, G., Kriehuber, E., Diem, K., Weninger, W., Tschachler, E., Alitalo, K. and Kerjaschki, D. (1999) Angiosarcomas Express Mixed Endothelial Phenotypes of Blood and Lymphatic Capillaries: Podoplanin as a Specific Marker for Lymphatic Endothelium. The American Journal of Pathology, 154, 385-394.
https://doi.org/10.1016/S0002-9440(10)65285-6
[30]  Edwards, J.R., Williams, K., Kindblom, L.G., Meis-Kindblom, J.M., Hogendoorn, P.C., Hughes, D., Forsyth, R.G., Jackson, D. and Athanasou, N.A. (2008) Lymphatics and Bone. Human Pathology, 39, 49-55.
https://doi.org/10.1016/j.humpath.2007.04.022

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133