全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Simple Protocol for the Micropropagation of Teak (Tectona grandis Linn.) in Semi-Solid and Liquid Media in RITA® Bioreactors and ex Vitro Rooting

DOI: 10.4236/ajps.2019.107081, PP. 1121-1141

Keywords: Micropropagation, Teak, Tectona grandis, RITA® Bioreactors, Temporary Immersion, Ex Vitro Rooting

Full-Text   Cite this paper   Add to My Lib

Abstract:

In Latin America the forestry of exotic species such as teak has been increasing in recent decades, due to their advantages in wood quality, rapid growth; and the relative ease of producing clones and their multiplication with respect to native species. Therefore, there is great interest in developing larger-scale propagation strategies that reduce costs and intensive manual labor. Culture in liquid media with temporary immersion and the semi-automation of the system has raised expectations for large-scale micropropagation. We report a protocol for teak, which reuses the primary explants in several culture cycles in semi-solid medium to produce nodal explants for the multiplication phase in temporary immersion bioreactors (RITA® ). The control of factors such as cytokinin concentration, explants density, immersion frequencies and culture duration was analyzed. The number of shoots increased with 0.5 mg·l-1 of BA (6-Benzyladenine), alone or in combination with 0.5 mg·l-1 of Kinetin, with 2 daily immersions of 1 minute each; however, these shoots showed a high degree of hyperhydricity. When 0.05 mg·l-1 of BA was used with 1 immersion of 1 minute every 2 days, the hyperhydricity decreased. Although the number of shoots was lower, they showed good length to be used during multiplication and rooting ex vitro. Our results suggest that teak micropropagation can be simplified in two phases in vitro, the establishment and multiplication; followed by rooting ex vitro and acclimatization. This would imply a reduction in production costs, since most of the multiplication would take place in RITA® containers.

References

[1]  Goh, D.K.S. and Monteuuis, O. (2016) Teak. In: Sung Park, Y., Bonga, J.M. and Moon, H.K., Eds., Vegetative Propagation of Forest Trees, National Institute of Forest Science (NIFoS), Seoul, 425-440.
[2]  Ugalde, L. (2013) Teak: New Trends in Silviculture, Commercialization and Wood Utilization. International Forestry and Agroforestry, Cartago, 552 p.
[3]  Mendoza de Gyves, E., Royani, J.I. and Rugini, E. (2007) Efficient Method of Micropropagation and in Vitro Rooting of Teak (Tectona grandis L.) Focusing on Large-Scale Industrial Plantations. Annals of Forest Science, 64, 73-78.
[4]  Santos, A.F., Almeida, B.C., Gava, F., Favare, H., Filho, J., Costa, R. and Brondani, G. (2014) Clones Production of Tectona grandis. Annals of Forest Science, 1, 75-82.
[5]  Gupta, P.K., Nadgir, A.L., Mascarenhas, A.F. and Jaganathan, V. (1980) Tissue Culture of Forest Trees—Clonal Multiplication of Tectona grandis (Teak) by Tissue Culture. Plant Science Letters, 17, 259-268.
https://doi.org/10.1016/0304-4211(80)90156-X
[6]  Sunitibala, D.Y., Mukherjee, B.B. and Gupta (1994) Rapid Cloning of Elite Teak (Tectona grandis Linn.) by in Vitro Multiple Shoot Production. Indian Journal of Experimental Biology, 32, 668-671.
[7]  Monteuuis, O., Bon, M.C. and Goh, D.K.S. (1998) Teak Propagation by in Vitro Culture. Bois et Forets des Tropiques, 256, 43-53.
[8]  Daquinta, M., Ramos, L., Capote, I., Lezcan, Y., Rodríguez, R., Trina, D. and Escalona, M. (2001) Micropropagation of Teak (Tectona grandis L.f.). Revista Forestal Centroamericana, 35, 25-28. (In Spanish)
[9]  Tiwari, S.K., Tiwari, K.P. and Siri, E.A. (2002) An Improved Micropropagation Protocol for Teak. Plant Cell, Tissue and Organ Culture, 71, 1-6.
https://doi.org/10.1023/A:1016570000846
[10]  Rojas, F. and Abdelnour-Esquivel, A. (2012) In Vitro Development of Teak Buds (Tectona grandis L.f.). Tecnología en Marcha, 25, 67-72. (In Spanish)
https://doi.org/10.18845/tm.v25i5.475
[11]  Akram, M. and Aftab, F. (2008) High Frequency Multiple Shoot Formation from Nodal Explants of Teak (Tectona grandis L.) Induced by Thidiazuron. Propagation of Ornamental Plants, 8, 72-75.
[12]  Tambarussi, E., Rogalski, M., Galeano, E., Brondani, de Martin F., da Silva, A. and Carrer, H. (2017) Efficient and New Method for Tectona grandis in Vitro Regeneration. Crop Breeding and Applied Biotechnology, 17, 124-132.
https://doi.org/10.1590/1984-70332017v17n2a19
[13]  Akram, M. and Aftab, F. (2016) Establishment of Embryogenic Cultures and Efficient Plant Regeneration System from Explants of Forced Softwood Shoots of Teak (Tectona grandis L.). Horticultural Plant Journal, 2, 293-300.
https://doi.org/10.1016/j.hpj.2017.01.008
[14]  Quiala, E., Canal, M.J., Meijón, M., Rodríguez, R., Chávez, M., Valledor, L., de Feria, M. and Barbón, R. (2012) Morphological and Physiological Responses of Proliferating Shoots of Teak to Temporary Immersion and BA Treatments. Plant Cell, Tissue and Organ Culture, 109, 223-234.
https://doi.org/10.1007/s11240-011-0088-3
[15]  Aitken-Christie, J., Kozai, T. and Takayama, S. (1995) Automation in Plant Tissue Culture—General Introduction and Overview. In: Aitken-Christie, J., Kozai, T. and Smith, L., Eds., Automation and Environmental Control in Plant Tissue Culture, Kluwer Academic Publishers, Dordrecht, 1-18.
https://doi.org/10.1007/978-94-015-8461-6_1
[16]  Etienne, H. and Berthouly, M. (2002) Temporary Immersion Systems in Plant Micropropagation. Plant Cell, Tissue and Organ Culture, 69, 215-231.
https://doi.org/10.1023/A:1015668610465
[17]  Escalona, M., Samson, G., Borroto, C. and Desjardins, Y. (2003) Physiology of Effects of Temporary Immersion Bioreactors on Micropropagated Pineapple Plantlets. In Vitro Cellular & Developmental Biology—Plant, 39, 651-656.
https://doi.org/10.1079/IVP2003473
[18]  Vidal, N., Blanco, B. and Cuenca, B. (2015) A Temporary Immersion System for Micropropagation of Axillary Shoots of Hybrid Chestnut. Plant Cell, Tissue and Organ Culture, 123, 229-243.
https://doi.org/10.1007/s11240-015-0827-y
[19]  Kim, S.J., Dewir, Y.S. and Moon, H.K. (2011) Large-Scale Plantlets Conversion from Cotyledonary Somatic Embryos of Kalopanax septemlobus Tree Using Bioreactor Cultures. Journal of Plant Biochemistry and Biotechnology, 20, 241-248.
https://doi.org/10.1007/s13562-011-0052-7
[20]  Mallón, R., Covelo, P. and Vieitez, A.M. (2012) Improving Secondary Embryogenesis in Quercus robur: Application of Temporary Immersion for Mass Propagation. Trees, 26, 731-741.
https://doi.org/10.1007/s00468-011-0639-6
[21]  Pérez, M., Bueno, M.A., Escalona, M., Toorop, P., Rodríguez, R. and Canal, M.J. (2013) Temporary Immersion Systems (RITA® ) for the Improvement of Cork Oak Somatic Embryogenic Culture Proliferation and Somatic Embryo Production. Trees, 27, 1277-1284.
https://doi.org/10.1007/s00468-013-0876-y
[22]  Etienne, H., Lartaud, M., Michaux-Ferrière, N., Carron, M.P., Berthouly, M. and Teisson, C. (1997) Improvement of Somatic Embryogenesis in Hevea brasiliensis (Mull. Arg.) Using the Temporary Immersion Technique. In Vitro Cellular & Developmental Biology—Plant, 33, 81-87.
https://doi.org/10.1007/s11627-997-0001-2
[23]  Martre, P., Lacan, D., Just, D. and Teisson, C. (2001) Physiological Effects of Temporary Immersion on Hevea brasiliensis (Müll. Arg.) Callus. Plant Cell, Tissue and Organ Culture, 67, 25-35.
https://doi.org/10.1023/A:1011666531233
[24]  Etienne-Barry, D., Bertrand, B., Vásquez, N. and Etienne, H. (1999) Direct Sowing of Coffea arabica Somatic Embryos Mass-Produced in a Bioreactor and Regeneration of Plants. Plant Cell Reports, 19, 111-117.
https://doi.org/10.1007/s002990050720
[25]  Ducos, J.P., Alenton, R., Reano, J.F., Kanchanomai, C., Deshayes, A. and Pètiard, V. (2003) Agronomic Performance of Coffea canephora P. Trees Derived from Large-Scale Somatic Embryos Production in Liquid Medium. Euphytica, 131, 215-223.
https://doi.org/10.1023/A:1023915613158
[26]  Niemenak, N., Saare-Surminski, K., Rohsius, C., Ndoumou, D. and Lieberei, R. (2008) Regeneration of Somatic Embryos in Theobroma cacao L. in Temporary Immersion Bioreactor and Analyses of Free Amino Acids in Different Tissues. Plant Cell Reports, 27, 667-676.
https://doi.org/10.1007/s00299-007-0497-2
[27]  Sumaryono Riyadi, I., Kasi, P.D. and Ginting, G. (2008) Growth and Differentiation of Embryogenic Callus and Somatic Embryos of Oil Palm (Elaeis guineensis Jacq.) in Temporary Immersion System. Indonesian Journal of Agricultural Science, 1, 109-114.
[28]  Steinmacher, D.A., Guerra, M., Saare-Surminski, K. and Lieberei, R. (2011) A Temporary Immersion System Improves in Vitro Regeneration of Peach Palm through Secondary Somatic Embryogenesis. Annals of Botany, 108, 1463-1475.
https://doi.org/10.1093/aob/mcr033
[29]  Castro, D. and González, J. (2002) Micropropagation of Eucalyptus (Eucalyptus grandis Hill ex. Maiden) in the Temporary Immersion System. Agricultura Técnica, 6, 68-78. (In Spanish)
[30]  McAlister, B., Finnie, J., Watt, M.P. and Blakeway, F. (2005) Use of the Temporary Immersion Bioreactor System (RITA® ) for the Production of Commercial Eucalyptus Clones in Mondi Forests (SA). Plant Cell, Tissue and Organ Culture, 81, 347-358.
https://doi.org/10.1007/s11240-004-6658-x
[31]  Oliveira, M.L., Xavier, A., Penchel, R.M. and Santos, A.F. (2011) In Vitro Multiplication of Eucalyptus grandis x Europhylla Grown in Semisolid Medium and in Temporary Immersion Bioreactor. Scientia Forestalis, 39, 309-315. (In Portuguese)
[32]  Murch, S.J., Liu, C.Z., Romero, R.M. and Saxena, P.K. (2004) In Vitro Culture and Temporary Immersion Bioreactor Production of Crescentia cujete. Plant Cell, Tissue and Organ Culture, 78, 63-68.
https://doi.org/10.1023/B:TICU.0000020397.01895.3e
[33]  Zhu, L.H., Li, X.Y. and Welander, M. (2005) Optimization of Growing Conditions for the Apple Rootstock M26 Grown in RITA Containers Using Temporary Immersion Principle. Plant Cell, Tissue and Organ Culture, 81, 313-318.
https://doi.org/10.1007/s11240-004-6659-9
[34]  Troch, V., Sapeta, H., Werbrouck, S., Geelen, D. and Van Labeke, M.C. (2010) In Vitro Culture of Chestnut (Castanea sativa Mill.) Using Temporary Immersion Bioreactors. Acta Horticulturae, 885, 383-390.
https://doi.org/10.17660/ActaHortic.2010.885.54
[35]  Hernández Aguilar, A., Rojas Vargas, A., Hine, A. and Daquinta, M. (2013) In Vitro Multiplication of Gmelina arborea Roxb in Temporary Immersion Systems. Biotecnología Vegetal, 13, 153-159. (In Spanish)
[36]  Vilchez, J. and Albany, N. (2014) In Vitro Multiplication of Psidium guajava L. in Temporary Immersion Systems. Revista Colombiana de Biotecnología, 16, 96-103.
https://doi.org/10.15446/rev.colomb.biote.v16n2.42180
[37]  Akdemir, H., Suzerer, V., Ahmet Onay, A., Tilkat, E., Ersali, Y. and Ozden, Y. (2014) Micropropagation of the Pistachio and Its Rootstocks by Temporary Immersion System. Plant Cell, Tissue and Organ Culture, 117, 65-76.
https://doi.org/10.1007/s11240-013-0421-0
[38]  Aguilar, M.E., Ortiz, J.L., Kim, Y.W., Kim, J.A. and Moon, H.K. (2017) Contributions of Somatic Embryogenesis and Other in Vitro Propagation Techniques to the Genetic Improvement of Tropical Woody Species: Coffee arabica, Tectona grandis and Gmelina arborea. In: Sung Park, Y. and Trontin, J.F., Eds., Somatic Embryogenesis and Other Vegetative Propagation Technologies, IUFRO Unit, La Plata, 59-78.
[39]  Escalona, M., Lorenzo, J.C., González, B., Daquinta, M., González, J.L., Desjardins, Y. and Borroto, C.G. (1999) Pineapple (Ananas comosus L. Merr) Micropropagation in Temporary Immersion Systems. Plant Cell Reports, 18, 743-748.
https://doi.org/10.1007/s002990050653
[40]  Ivanova, M. and Van Staden, J. (2009) Nitrogen Source, Concentration, and NH4: NO3-Ratio Influence Shoot Regeneration and Hyperhydricity in Tissue Cultured Aloe polyphylla. Plant Cell, Tissue and Organ Culture, 99, 167-174.
https://doi.org/10.1007/s11240-009-9589-8
[41]  Ivanova, M. and Van Staden, J. (2011) Influence of Gelling Agent and Cytokinins on the Control of Hyperhydricity in Aloe polyphylla. Plant Cell, Tissue and Organ Culture, 104, 13-21.
https://doi.org/10.1007/s11240-010-9794-5
[42]  Bairu, M.W., Stirk, W.A., Dolezˇal, K. and Van Staden, J. (2007) Optimizing the Micropropagation Protocol for the Endangered Aloe polyphylla: Can Meta-Topolin and Its Derivatives Serve as Replacement for Benzyladenine and Zeatin? Plant Cell, Tissue and Organ Culture, 90, 15-23.
https://doi.org/10.1007/s11240-007-9233-4
[43]  Moncaleán, P., Fal, M.A., Castanon, S., Fernández, B. and Rodríguez, A. (2009) Relative Water Content, in Vitro Proliferation, and Growth of Actidiana deliciosa Plantlets Are Affected by Benzyladenine. New Zealand Journal of Crop and Horticultural Science, 37, 351-359.
https://doi.org/10.1080/01140671.2009.9687590
[44]  Saher, S., Piqueras, A., Hellin, E. and Olmos, E. (2004) Hyperhydricity in Micropropagated Carnation Shoots: The Role of Oxidative Stress. Physiologia Plantarum, 120, 152-161.
https://doi.org/10.1111/j.0031-9317.2004.0219.x
[45]  Wu, H.J., Yu, X.N., Teixeira da Silva, J. and Lu, G.P. (2011) Direct Shoot Induction of Paeonia lactiflora “Zhong Sheng Fen” and Rejuvenation of Hyperhydric Shoots. New Zealand Journal of Crop and Horticultural Science, 39, 271-278.
https://doi.org/10.1080/01140671.2011.594445
[46]  Lardet, L., Aguilar, M.E., Michaux-Ferriere, N. and Berthouly, M. (1998) Effect of Strictly Plant-Related Factors on the Response of Hevea brasiliensis and Theobroma cacao Nodal Explants Cultured in Vitro. In Vitro Cellular & Developmental Biology—Plant, 34, 34-40.
https://doi.org/10.1007/BF02823120
[47]  Murashige, T. and Skoog, F. (1962) A Revised Medium for Rapid Growth and Biossays with Tobacco Tissue Culture. Physiologia Plantarum, 15, 473-497.
https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
[48]  InfoStat (2008) User’s Manual. Cordobas, Brujas. (In Spanish)
[49]  Ahmadian, M., Babaei, A., Shokri, S. and Hessami, S. (2017) Micropropagation of Carnation (Dianthus caryophyllus L.) in Liquid Medium by Temporary Immersion Bioreactor in Comparison with Solid Culture. Journal of Genetic Engineering and Biotechnology, 15, 309-315.
https://doi.org/10.1016/j.jgeb.2017.07.005
[50]  Hazarika, B.N. (2006) Morpho-Physiological Disorders in in Vitro Culture of Plants. Scientia Horticulturae, 108, 105-120.
https://doi.org/10.1016/j.scienta.2006.01.038
[51]  Kumar, S.R. and Kumar, M.P. (2016) Advances in Micropropagation of Teak (Tectona grandis L.f). Indian Journal of Life Sciences, 5, 11-16.
[52]  García-Ramírez, Y., González-González, M., Torres García, S., Freire-Seijo, M., Pérez, M., Mollineada Trujillo, A. and Rivero, L. (2016) Effect of Inoculum Density on the Morphology and Physiology of the Shoots of Bambusa vulgaris Schrad. ex Wendl Cultivated in Temporary Immersion System. Biotecnología Vegetal, 16, 231-237. (In Spanish)
[53]  Kevers, C., Franck, T., Strasser, R., Dommes, J. and Gaspar, T. (2004) Hyperhydricity of Micropropagated Shoots: A Typically Stress-Induced Change of Physiological State. Plant Cell Tissue and Organ Culture, 77, 181-191.
https://doi.org/10.1023/B:TICU.0000016825.18930.e4
[54]  Aguilar, M.E., Ortiz, J.L., Mesén, F., Jiménez, L.D. and Altmann, F. (2018) Cafe Arabica (Coffea arabica L.). In: Jain, S. and Gupta, P., Eds., Step Wise Protocols for Somatic Embryogenesis of Important Woody Plants II. Forestry Sciences, Vol. 85, Springer, Cham, 39-62.
https://doi.org/10.1007/978-3-319-79087-9_3
[55]  Akram, M. and Aftab, F. (2009) An Efficient Method for Clonal Propagation and in Vitro Establishment of Softwood Shoots from Epicormic Buds of Teak (Tectona grandis L.). Forestry Studies in China, 11, 105-110.
https://doi.org/10.1007/s11632-009-0018-1
[56]  Shekhawat, M., Kannan, N., Manokari, M. and Ravindran, C. (2015) In Vitro Regeneration of Shoots and ex Vitro Rooting of an Important Medicinal Plant Passiflora foetida L. through Nodal Segment Cultures. Journal of Genetic Engineering and Biotechnology, 13, 209-214.
https://doi.org/10.1016/j.jgeb.2015.08.002

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133