Interpretation of Geological Structures Hosting Potential Gold Deposits in the Konongo Gold Mine Using Airborne Magnetic, Electromagnetic and Radiometric Datasets
The renewed interest in the reactivation of the defunct National Konongo Gold Mine located in the Ashanti Greenstone Belt, calls for a further probe into its geology and the associated mineral hosting structures to discover its mineralization potential. In order to achieve this, airborne magnetic, radiometric and electromagnetic datasets were interpreted to determine the potential gold hosting features in the studied area. The results show the area to consist of the metasediment, the metavolcanic, Tartwaian Formation and their associated granitoids. Results also show that the Tarkwaian sediments, observed largely in the north-eastern side of the site; widen out substantially and truncate in the south. The analysis of the structure lineaments using a rose diagram reveals three main tectonic structures trending in N-S, NNW-SSE, and third the structure trending in the NNE-SSW to NE-SW directions in the area. The dominant structures in the area, form 90% of all the delineated structures and trend in the NE-SW and NNE-SSW direction with the remaining 10% trending in the N-S and NNW-SSE. These structures are associated with the major shear and fracture zones located mainly at the contact between the basin sediments and volcanic belt and also associated with the Tarkwaian Formation. The mapped potential gold mineralization zones located mainly at the contact between the metasediment and the metavolcanic units of the Birimian Supergroup, as well as the Tarkwaian Formation, were mapped by integrating the structures, alteration zones as well as the complex dyke systems. This paper delineates the prominent geological structures with the potential of hosting economic gold mineralization in and around the Konongo Gold Mine.
References
[1]
Agyei-Duodu, J., Loh, G. K., Boamah, K. O., Baba, M., Hirdes, W., Toloczyki, M., & Davis, D. W. (2009). Geological Survey Department of Ghana (GSD) Report. Geological Map of Ghana 1:1000000, Accra Ghana.
[2]
Airo, M.-L. (2015). Geophysical Signatures of Mineral Deposit Types in Finland. Geological Survey of Finland, Special Paper 58, 9-70.
[3]
Allek, K., & Hamoudi, M. (2008). Regional-Scale Aeromagnetic Survey of the South-West of Algeria: A Tool for Area Selection for Diamond Exploration. Journal of African Earth Sciences, 50, 67-78. https://doi.org/10.1016/j.jafrearsci.2007.09.018
[4]
Allibone, A., Teasdale, J., Cameron, G., Etheridge, M., Uttley, P., Soboh, A., Appiah-Kubi, J., Adanu, A., Arthur, R., & Mamphey, J. (2002). Timing and Structural Controls on Gold Mineralization at the Bogoso Gold Mine, Ghana, West Africa. Economic Geology, 97, 949-969. https://doi.org/10.2113/gsecongeo.97.5.949
[5]
Ansari, A. H., & Alamdar, K. (2009). Reduction to the Pole of Magnetic Anomalies Using Analytic Signal. World Applied Sciences Journal, 7, 405-409.
[6]
Asiamah, G. K. (2004). The South Ashanti Greenstone Belt GEOTEM and Magnetic Survey-Application to Mineral Exploration. In 2004 SEG Annual Meeting. Denver, CO: Society of Exploration Geophysicists. https://doi.org/10.1190/1.1843293
[7]
Boadi, B., Wemegah, D. D., & Preko, K. (2013). Geological and Structural Interpretation of the Konongo Area of the Ashanti Gold Belt of Ghana from Aeromagnetic and Radiometric Data. International Research Journal of Geology and Mining, 3, 124-135.
[8]
Cozens, B. (1989). The Geology and Structure of the Konongo Gold Mine, Ghana, and Its Implications in Exploration. In R. W. Le Maitre (Ed.), Pathways in Geology—Essays in Honour of Edwin Sharbon Hills (pp. 439-456). Melbourne: Blackwell.
[9]
Debeglia, N., & Corpel, J. (1997). Automatic 3D Interpretation of Potential Field Data Using Analytic Signal Derivatives. Geophysics, 62, 87-96.
https://doi.org/10.1190/1.1444149
[10]
Dickson, B. L., & Scott, K. M. (1997). Interpretation of Aerial Gamma-Ray Surveys-Adding the Geochemical Factors. AGSO Journal of Australian Geology and Geophysics, 17, 187-200.
[11]
Eisenlohr, B. N. W., & Hirdes, W. (1992). The Structural Development of the Early Proterozoic Birimian and Tarkwaian Rocks of Southwest Ghana, West Africa. Journal of African Earth Sciences, 14, 313-325. https://doi.org/10.1016/0899-5362(92)90035-B
[12]
Feybesse, J. L., Billa, M., Guerrot, C., Duguey, E., Lescuyer, J. L., Milési, J. P., & Bouchot, V. (2006). The Paleoproterozoic Ghanaian Province: Geodynamic Model and Ore Controls, including Regional Stress Modeling. Precambrian Research, 149, 149-196.
https://doi.org/10.1016/j.precamres.2006.06.003
[13]
Ford, K., Keating, P., & Thomas, M. D. (2007). Overview of Geophysical Signatures Associated with Canadian Ore Deposits. In W. D. Goodfellow (Ed.), Mineral Deposits of Canada—A Synthesis of Major Deposit-Types, District Metallogeny, the Evolution of Geological Provinces, and Exploration Methods (pp. 939-970). Special Publication No. 5, St. John’s, NL: Geological Association of Canada, Mineral Deposits Division.
[14]
Geosoft Inc. (2008). Oasis Montaj 7.0 Mapping and Processing System. The Core Software Platform for Working with Large Volume Spatial Data (pp. 50-150). Ontorio.
[15]
Graham, K. M., Wemegah, D. D., & Preko, K. (2014). Geological and Structural Interpretation of Part of the Buem Formation, Ghana, Using Aerogeophysical Data. Journal of Environment and Earth Science, 4, 17-31.
[16]
Griffis, R. J., Barning, K., Agezo, F. L., & Akosah, F. K. (2002). Gold Deposits of Ghana (pp. 7-12, 19-37, 163-169). Minerals Commission Report.
[17]
Gunn, P. J., & Dentith, M. C. (1997). Magnetic Responses Associated with Mineral Deposits. AGSO Journal of Australian Geology and Geophysics, 17, 145-158.
[18]
Hammond, N. Q., & Tabata, H. (1997). Characteristics of Ore Minerals Associated with Gold at the Prestea Mine, Ghana. Mineralogical Magazine, 61, 879-894.
https://doi.org/10.1180/minmag.1997.061.409.10
[19]
Hirdes, W., & Nunoo, B. (1994). The Proterozoic Paleoplacers at Tarkwa Gold Mine, SW Ghana: Sedimentology, Mineralogy, and Precise Age Dating of the Main Reef and West Reef, and Bearing of the Investigations on Source Area Aspects. Geologisches Jahrbuch D, 100, 247-311.
[20]
Huang, H. & Fraser, D. C. (2003). Inversion of Helicopter Electromagnetic Data to a Magnetic Conductive Layered Earth. Geophysics, 68, 1211-1214.
https://doi.org/10.1190/1.1598113
[21]
Jaques, A. L., Wellman, P., Whitaker, A., & Wyborn, D. (1997). High-Resolution Geophysics in Modern Geological Mapping. AGSO Journal of Australian Geology and Geophysics, 17, 159-173.
[22]
John, T., Klemd, R., Hirdes, W., & Loh, G. (1999). The Metamorphic Evolution of the Paleoproterozoic (Birimian) Volcanic Ashanti Belt (Ghana, West Africa). Precambrian Research, 98, 11-30. https://doi.org/10.1016/S0301-9268(99)00024-8
[23]
Keller, G. V. (1987). Rock and Mineral Properties. In M. C. Nabighian, (Ed.), Electromagnetic Methods in Applied Geophysics: Part A (pp. 13-52). Tulsa, OK: Society of Exploration Geophysicists.
[24]
Kesse, G. O. (1985). The Mineral and Rock Resources of Ghana. Geological Survey Department 642 A.A., Rotterdam: Balkema.
[25]
Kleinschrot, D., Klemd, R., Brocker, M., Okrusch, M., Franz, L., & Schmidt, K. (1994). Protores and Country Rocks of the Nsuta Manganese Deposit. Neues Jahrbuch Mineral, 168, 67-108.
[26]
Kuma, J. S., Kim, Y. U., Boamah, D., & Sakamoto, I. (2010). Gold Potential of the Ashanti Belt of Ghana. Journal of the School Marine Science and Technology, Tokai University, 8, 25-39.
[27]
Li, X. (2008). Magnetic Reduction-to-the-Pole at Low Latitudes: Observations and Considerations. The Leading Edge, 27, 990-1002. https://doi.org/10.1190/1.2967550
[28]
MacLeod, I. N., Jones, K., & Dai, T. F. (1993). 3-D Analytic Signal in the Interpretation of Total Magnetic Field Data at Low Magnetic Latitudes. Exploration Geophysics, 24, 679-688. https://doi.org/10.1071/EG993679
[29]
Milési, J. P., Ledru, P., Feybesse, J. L., Dommanget, A., & Marcoux, E. (1992). Early Proterozoic Ore Deposits and Tectonics of the Birimian Orogenic Belt, West Africa. Precambrian Research, 58, 305-344. https://doi.org/10.1016/0301-9268(92)90123-6
[30]
Morgan, L. A. (2012). Geophysical Characteristics of Volcanogenic Massive Sulphide Deposits in Volcanogenic Massive Sulphide Occurrence Model: U.S. Geological Survey Scientific Investigations Report 2010-5070-C.
[31]
Nabighian, M. N. (1984). Toward a Three-Dimensional Automatic Interpretation of Potential Field Data via Generalised Hilbert Transforms: Fundamental Relations. Geophysics, 49, 780-789. https://doi.org/10.1190/1.1441706
[32]
Oberthür, T., Vetter, U., Schmidt Mumm, A., Weiser, T., Amanor, J. A., Gyapong, W. A., Kumi, R., & Blenkinsop, T. G. (1994). The Ashanti Gold Mine at Obuasi, Ghana: Mineralogical, Geochemical, Stable Isotope and Fluid Inclusion Studies on the Metallogenesis of the Deposit. Geologisches Jahrbuch, 100, 31-129.
[33]
Oberthür, T., Weiser, T., Amanor, J. A., & Chryssoulis, S. L. (1997). Mineralogical Siting and Distribution of Gold in Quartz Veins and Sulphide Ores of the Ashanti Mine and Other Deposits in the Ashanti Belt of Ghana: Genetic Implications. Mineralium Deposita, 32, 2-15. https://doi.org/10.1007/s001260050068
[34]
Oliver, B. (2009). Report, Development Strategy Konongo Gold Project: A New Gold Project in the World-Class Ashanti Gold Belt of Ghana. Victoria, Australia: Signature Metals Ltd.
[35]
Palacky, G. J. (1987). Resistivity Characteristics of Geologic Targets. In M. N. Nabighian (Ed.), Electromagnetic Methods in Applied Geophysics Theory: Tulsa, Okla (Vol. 1, pp. 53-122). Society of Exploration Geophysicists.
[36]
Perrouty, S., Aillères, L., Jessell, M. W., Baratoux, L., Bourassad, Y., & Crawford, B. (2012). Revised Eburnean Geodynamic Evolution of the Gold-Rich Southern Ashanti Belt, Ghana, with New Field and Geophysical Evidence of Pre-Tarkwaian Deformations. Precambrian Research, 204-205, 12-39.
https://doi.org/10.1016/j.precamres.2012.01.003
[37]
Plumlee, G., Smith, K. S., Ficklin, W., & Briggs P. H. (1992). Geological and Geochemical Controls on the Composition of Mine Drainages and Natural Drainages in Mineralized Areas. In Proceedings of 7th International Water-Rock Interaction Conference (pp. 419-422). Park City, UT.
[38]
Porwal, A., Carranza, E. J. M., & Hale, M. (2006). A Hybrid Fuzzy Weights-of-Evidence Model for Mineral Potential Mapping. Natural Resources Research, 15, 1-14.
https://doi.org/10.1007/s11053-006-9012-7
[39]
Rani, K., Guha, A., Mondal, S., Pal, S. K., & Kumar, K. V. (2019). ASTER Multispectral Bands, Ground Magnetic Data, Ground Spectroscopy and Space-Based EIGEN6C4 Gravity Data Model for Identifying Potential Zones for Gold Sulphide Mineralization in Bhukia, Rajasthan, India. Journal of Applied Geophysics, 160, 28-46.
https://doi.org/10.1016/j.jappgeo.2018.10.001
Roest, W. R., Verhoef, J., & Pilkington, M. (1992). Magnetic Interpretation Using the 3-D Analytical Signal. Geophysics, 57, 116-125. https://doi.org/10.1190/1.1443174
[42]
SEMS Exploration Ltd. (2006). North Ashanti Gold Project Ghana, West Africa. Resource Report, Accra, Ghana. AMI Resources Inc.
[43]
Smith, W. H. F., & Wessel, P. (1990). Gridding with Continuous Curvature Spline in Tension. Geophysics, 55, 293-305. https://doi.org/10.1190/1.1442837
[44]
Takyi-Kyeremeh, K. Wemegah, D. D., Preko, K., & Menyeh, A. (2019). Integrated Geophysical Study of the Subika Gold Deposit in the Sefwi Belt, Ghana. Cogent Geoscience, 5, 1-16. https://doi.org/10.1080/23312041.2019.1585406
[45]
Taylor, G., & Eggleton, R. A. (2001). Regolith Geology and Geomorphology. Hoboken, NJ: John Wiley & Sons.
[46]
Telford, W. M., Geldart, L. P., & Sheriff, R. E. (1990). Applied Geophysics (2nd ed.) Cambridge: Cambridge University Press. https://doi.org/10.1017/CBO9781139167932
[47]
Thomas, M. D., Walker, J. A., Keating, P., Shives, R., Kiss, F., & Good-fellow, W. D. (2000). Geophysical Atlas of Massive Sulphide Signatures, Bathurst Mining Camp, New Brunswick. Geological Survey of Canada Open File 3887, New Brunswick Department of Natural Resources and Energy, Minerals and Energy Division Open File 2000-4.
https://doi.org/10.4095/211549
[48]
Wemegah, D. D., Fiandaca, G., Auken, E., Menyeh, A., & Danuor, S. K. (2017). Spectral Time-Domain Induced Polarisation and Magnetic Surveying—An Efficient Tool for Characterisation of Solid Waste Deposits in Developing Countries. EAGE Near Surface Geophysics, 15, 75-84.
[49]
Wemegah, D. D., Preko, K., Noye, R. M., Boadi, B., Menyeh, A., Danuor, S. K., & Amenyoh, T. (2015). Geophysical Interpretation of Possible Gold Mineralization Zones in Kyerano, South-Western Ghana Using Aeromagnetic and Radiometric Datasets. Journal of Geoscience and Environment Protection, 3, 67-82.
https://doi.org/10.4236/gep.2015.34008
[50]
Wilford, J. R., Bierwirth, P. N., & Craig, M. A. (1997). Application of Airborne Gamma-Ray Spectrometry in Soil Regolith Mapping and Applied Geomorphology. AGSO Journal of Australian Geology and Geophysics, 17, 201-216.
[51]
Zhang, G., Lü, Q. T., Zhang, G. B., Lin, P. R., Jia, Z. Y., & Suo, K. (2018). Joint Interpretation of Geological, Magnetic, AMT, and ERT Data for Mineral Exploration in the Northeast of Inner Mongolia, China. Pure and Applied Geophysics, 175, 989-1002.
https://doi.org/10.1007/s00024-017-1733-5