全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Almost Injective Mappings of Totally Bounded Metric Spaces into Finite Dimensional Euclidean Spaces

DOI: 10.4236/apm.2019.96028, PP. 555-566

Keywords: Totally Bounded Metric Spaces, Dimension Theory, Finite Dimensional Euclidean Spaces, ε-Mapping

Full-Text   Cite this paper   Add to My Lib

Abstract:

Let χ= be a metric space and let ε be a positive real number. Then a function f: X→Y is defined to be an ε-map if and only if for all yY, the diameter of f-1(y)?is at most ε. In Theorem 10 we will give a new proof for the following well known fact: if χ is totally bounded, then for all ε there exists a finite number n and a continuous ε-map fε: X→Rn (here Rn is the usual n-dimensional Euclidean space endowed with the Euclidean metric). If ε is “small”, then fε is “almost injective”; and still exists even if χ has infinite covering dimension (in this case, n depends on ε, of course). Contrary to the known proofs, our proof technique is effective in the sense, that it allows establishing estimations for n in terms of ε and structural properties of χ.

References

[1]  Munkres, J.R. (2000) Topology. Prentice Hall, Upper Saddle River.
[2]  Dranishnikov, A.N. (2018) Dimension of Compact Metric Spaces. Indagationes Mathematicae , 29, 429-449.
https://doi.org/10.1016/j.indag.2017.04.005
[3]  Engelking, R. (1989) General Topology. Heldermann Verlag, Berlin.
[4]  Shelah, S. (1990) Classification Theory. North-Holland, Amsterdam.
[5]  Sági, G. and Gyenis, Z. (2013) Upward Morley’s Theorem Downward. Mathematical Logic Quarterly , 59, 303-331.
https://doi.org/10.1002/malq.201110048
[6]  Sági, G. and Nyiri, D. (2016) On Embeddings of Finite Metric Spaces. The Proceedings of the 13th International Scientific Conference on Informatics , Poprad, 18-20 November 2015, 227-231.
https://doi.org/10.1109/Informatics.2015.7377837
[7]  Sági, G. (2015) Vaught ’s Conjecture from the Perspective of Algebraic Logic. Manuscript.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133