The gravity field and steady-state ocean circulation explorer (GOCE) satellite mission has provided numerous Global Geopotential Models (GGMs) with different processing methodologies and model accuracies. In the current contribution, the latest releases of GOCE-based GGMs are evaluated on the regional scale using the available terrestrial GPS/Levelling and gravity data collected over Egypt. To overcome the spectral inconsistency between the GOCE-based GGMs and the ground-based data, the spectral enhancement method (SEM) is applied. Five of GOCE-based GGMs have been used, namely GOSG01S, IGGT_R1, IfE_GOCE05s_ GO_CONS_GCF_2_SPW_R5 (SPW_R5 in the following) and NULP-02. The evaluation process of GOCE-based GGMs with the available ground data over Egypt considering the SEM method shows remarkable improvements obtained from the SPW_R5 model. The model provides lower differences of the standard deviations with respect to the EGM2008 and the other applied geopotential gravity models as well as the applied ground-based gravity and GPS/Levelling data. The findings regarding the ground-based data show obvious reductions of about 15.16% and 32.22% achieved by the GOCE-based model in term of standard deviations differences of gravity anomalies and geoid heights, respectively. Therefore, the SPW_R5 model is recommended to be applied as a reference model for compensating the long-to-short wavelength (up to spherical harmonics degree/order 280) components when modelling the gravimetric geoid over Egypt.
References
[1]
Pail, R., Goiginger, H., Mayrhofer, R., Schuh, W.-D., Brockmann, J.M., Krasbutter, I., Hoeck, E. and Fecher, T. (2010) GOCE Gravity Field Model Derived from Orbit and Gradiometry Data Applying the Time-Wise Method. The ESA Living Planet Symposium, Bergen, 28 June-2 July 2010.
[2]
Bruinsma, S.L., Marty, J.C., Balmino, G., Biancale, R., Förste, C., Abrikosov, O. and Neumayer, H. (2010) GOCE Gravity Field Recovery by Means of the Direct Numerical Method. The ESA Living Planet Symposium, Bergen, 28 June-2 July 2010.
[3]
Migliaccio, F., Reguzzoni, M., Sanso, F., Tscherning, C.C. and Veicherts, M. (2010) GOCE Data Analysis: The Space-Wise Approach and the First Space-Wise Gravity Field Model. ESA Publications Division, Norwijk, Bergen.
[4]
Rummel, R., Gruber, T. and Koop, R. (2004) High Level Processing Facility for GOCE: Products and Processing Strategy. Proceedings of the 2nd International GOCE User Workshop “GOCE, the Geoid and Oceanography”, Frascati, 8-10 March 2004, ESA SP-569.
[5]
Hirt, C., Gruber, T. and Featherstone, W.E. (2011) Evaluation of the First GOCE Static Gravity Field Models Using Terrestrial Gravity, Vertical Deflections and EGM2008 Quasi Geoid Heights. Journal of Geodesy, 85, 723-740.
https://doi.org/10.1007/s00190-011-0482-y
[6]
Gruber, T., Visser, P.N.A.M., Ackermann, C. and Hosse, M. (2011) Validation of GOCE Gravity Field Models by Means of Orbit Residuals and Geoid Comparisons. Journal of Geodesy, 85, 845-860. https://doi.org/10.1007/s00190-011-0486-7
[7]
Janák, J. and Pitonák, M. (2011) Comparison and Testing of GOCE Global Gravity Models in Central Europe. Journal of Geodetic Science, 1, 333-347.
https://doi.org/10.2478/v10156-011-0010-2
[8]
Guimarães, G. Matos, A. and Blitzkow, D. (2012) An Evaluation of Recent GOCE Geopotential Models in Brazil. Journal of Geodetic Science, 2, 144-155.
https://doi.org/10.2478/v10156-011-0033-8
[9]
Yi, W. and Rummel, R. (2014) A Comparison of GOCE Gravitational Models with EGM2008. Journal of Geodynamics, 73, 14-22.
https://doi.org/10.1016/j.jog.2013.10.004
[10]
Alothman, A., Bouman, J., Gruber, T., Lieb, V., Alsubaei, M., Alomar, A., Fuchs, M. and Schmidt, M. (2014) Validation of Regional Geoid Models for Saudi Arabia Using GPS/Levelling Data and GOCE Observations. IAG Symposia on Gravity, Geoid and Height Systems, Venice, 9-12 October 2014, Vol. 141, 193-200.
https://doi.org/10.1007/978-3-319-10837-7_25
[11]
Voigt, C. and Denker, H. (2014) Regional Validation and Combination of GOCE Gravity Field Models and Terrestrial Data. In: Flechtner, F., Sneeuw, N. and Schuh, W.-D., Eds., Observation of the System Earth from Space, Geotechnologien Science Report No. 20, Springer, Berlin, 139-145.
https://doi.org/10.1007/978-3-642-32135-1_18
[12]
Godah, W. and Krynski, J. (2015) Comparison of GGMs Based on One Year GOCE Observations with the EGM2008 and Terrestrial Data over the Area of Sudan. International Journal of Applied Earth Observation and Geoinformation, 35, 128-135.
https://doi.org/10.1016/j.jag.2013.11.003
[13]
Huang, J. and Veronneau, M. (2014) A Stokesian Approach for the Comparative Analysis of Satellite Gravity Models and Terrestrial Gravity Data. In: Marti, U., Ed., Gravity, Geoid and Height Systems, Springer, New York, Vol. 141, 101-107.
https://doi.org/10.1007/978-3-319-10837-7_13
[14]
Elsaka, B., Alothman, A. and Godah, W. (2015) On the Contribution of GOCE Satellite Based GGMs to Improve GNSS/Levelling Geoid Heights Determination in Saudi Arabia. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 9, 1-10. https://doi.org/10.1109/JSTARS.2015.2495193
[15]
El-Ashquer, M., Elsaka, B. and El-Fiky, G. (2016) On the Accuracy Assessment of the Latest Releases of GOCE Satellite-Based Geopotential Models with EGM2008 and Terrestrial GPS/Levelling and Gravity Data over Egypt. International Journal of Geosciences, 7, 1323. https://doi.org/10.4236/ijg.2016.711097
[16]
Pavlis, N.K., Holmes, S.A., Kenyon, S.C. and Factor, J.K. (2012) The Development and Evaluation of the Earth Gravitational Model 2008 (EGM2008). Journal of Geophysical Research, 117, B04406. https://doi.org/10.1029/2011JB008916
[17]
Dawod, G. (1998) A National Gravity Standardization Network for Egypt. PhD Dissertation, Faculty of Engineering at Shoubra, Zagazig University, Zagazig.
[18]
Marchenko, A., Marchenko, D. and Lopushansky, A. (2016) Gravity Field Models Derived from the Second Degree Radial Derivatives of the GOCE Mission: A Case Study. Annals of Geophysics, 59, s0649-s0659.
[19]
Gatti, A., Reguzzoni, M., Migliaccio, F. and Sansò, F. (2016) Computation and Assessment of the Fifth Release of the GOCE-Only Space-Wise Solution. 1st Joint Commission 2 and IGFS Meeting, Thessaloníki, 19-23 September 2016.
[20]
Wu, H., Müller, J. and Brieden, P. (2016) The IfE Global Gravity Field Model from GOCE-Only Observations. International Symposium on Gravity, Geoid and Height Systems, Thessaloníki, 19-23 September 2016.
[21]
Lu, B., Luo, Z., Zhong, B., Zhou, H., Flechtner, F., Förste, C., Barthelmes, F. and Zhou, R. (2018) The Gravity Field Model IGGT_R1 Based on the Second Invariant of the GOCE Gravitational Gradient Tensor. Journal of Geodesy, 92, 561.
https://doi.org/10.1007/s00190-017-1089-8
[22]
Xu, X., Zhao, Y., Reubelt, T. and Robert, T. (2017) A GOCE Only Gravity Model GOSG01S and the Validation of GOCE Related Satellite Gravity Models. Geodesy and Geodynamics, 8, 260-272. https://doi.org/10.1016/j.geog.2017.03.013
[23]
Forsberg, R. (1984) A Study of Terrain Reductions, Density Anomalies and Geophysical Inversion Methods in Gravity Field Modelling. Report 355, Department of Geodetic Science and Surveying, Ohio State University, Columbus.
https://doi.org/10.21236/ADA150788
[24]
Rapp, R.H. (1986) Global Geopotential Solutions. In: Sunkel, H., Ed., Mathematical and Numerical Techniques in Physical Geodesy, Springer-Verlag, Heidelberg.
[25]
Rummel, R. and Van Gelderen, M. (1995) Meissl Scheme-Spectral Characteristics of Physical Geodesy. Manuscripta Geodaetica, 20, 379-385.
[26]
Gruber, T. (2009) Evaluation of the EGM2008 Gravity Field by Means of GPS-Levelling and Sea Surface Topography Solutions.
[27]
Voigt, C., Rülke, A., Denker, H., Ihde, J. and Liebsch, G. (2010) Validation of GOCE Products by Terrestrial Data Sets in Germany. Geotechnologien Science Report, 17, 106-111.
[28]
Ihde, J., Wilmes, H., Müller, J., Denker, H., Voigt, C. and Hosse, M. (2010) Validation of Satellite Gravity Field Models by Regional Terrestrial Data Sets. In: Flechtner, F.M., et al., Eds., System Earth via Geodetic-Geophysical Space Techniques, Springer, Berlin, 277-296. https://doi.org/10.1007/978-3-642-10228-8_22
[29]
Förste, C., Flechtner, F., Schmidt, R., Stubenvoll, R., Rothacher, M., Kusche, J., Neumayer, K.H., Biancale, R., Lemoine, J.M., Barthelmes, F., Bruinsma, S.L., König, R. and Meyer, U. (2008) EIGEN-GL05C: A New Global Combined High-Resolution GRACE-Based Gravity Field Model of the GFZ-GRGS Cooperation. Geophysical Research Abstracts, Vol. 10, Abstract No. EGU2008-A-06944, 2008, General Assembly European Geosciences Union, Vienna.
[30]
Förste, C., Bruinsma, S., Abrykosov, O., Flechtner, F., Marty, J.-C., Lemoine, J.-M., Dahle, C., Neumayer, K.-H., Barthelmes, F., König, R. and Biancale, R. (2014) EIGEN-6C4: The Latest Combined Global Gravity Field Model Including GOCE Data up to Degree and Order 1949 of GFZ Potsdam and GRGS Toulouse. Geophysical Research Abstracts, Vol. 16, EGU2014-3707, General Assembly European Geosciences Union, Vienna.
[31]
Rummel, R. (2010) GOCE: Gravitational Gradiometry in a Satellite. In: Freeden, W., Nashed, F.M.Z. and Sonar, T., Eds., Handbook of Geomathematics, Vol. 2, Springer, Berlin, 93-103. https://doi.org/10.1007/978-3-642-01546-5_4