South-central Chile has some potential mineral resources including radioactive and rare earth elements (REE) minerals. This study reports some basic characteristics of the mineralogy of a radioactive-rare earth elements occurrence, related to a pegmatitic outcrop “Vertientes Pegmatite” hosted on Paleozoic granitic rocks of the South Coastal Batholith and discusses potential areas for REE deposits, particularly beach placers along the coastline of the BioBío region. In this pegmatite, X-ray diffraction analysis shows uranium-bearing minerals such as coffinite and metaschoepite, along with microcline, anorthoclase, albite, quartz and illite. Through optical microscopy and electron probe micro-analyzer (EPMA), rare earth minerals (monazite and xenotime) and radioactive minerals (thorite and thorium silicate ± uranium) were identified. Additionally, granitic rocks of the South Coastal Batholith around this pegmatite show rare earth minerals (monazite and allanite).
References
[1]
Goodenough, K.M., Schilling, J., Jonsson, E., Kalvig, P., Charles, N., Tuduri, J., Deady, E.A., Sadeghi, M., Schiellerup, H., Müller, A., Bertrand, G., Arvanitidis, N., Eliopoulos, D.G., Shaw, R.A., Thrane, K. and Keulen, N. (2016) Europe’s Rare Earth Element Resource Potential: An Overview of REE Metallogenetic Provinces and Their Geodynamic Setting. Ore Geology Reviews, 72, 838-856.
https://doi.org/10.1016/j.oregeorev.2015.09.019
[2]
Comisión Chilena del Cobre (Cochilco) (2016) Situación actual del mercado de tierras raras y su potencial en Chile. Santiago, 55 p.
[3]
Guyonnet, D., Planchon, M., Rollat, A., Escalon, V., Tuduri, J., Charles, N., Vaxelaire, S., Dubois, D. and Fargier, H. (2015) Material Flow Analysis Applied to Rare Earth Elements in Europe. Journal of Cleaner Production, 107, 215-228.
https://doi.org/10.1016/j.jclepro.2015.04.123
[4]
Damascena, K.R., dos Santos Amaral, R., dos Santos Júnior, J.A., Genzini, F.A., da Silva, A.A. and Menezes, R.S.C. (2015) Rare-Earth Elements in Uranium Deposits in the Municipality of Pedra, Pernambuco, Brazil. Journal of Radioanalytical and Nuclear Chemistry, 304, 1053-1058. https://doi.org/10.1007/s10967-015-3934-7
[5]
Gambogi, J. (2019) Mineral Commodity Summaries 2019. U.S. Geological Survey, 132-133. https://doi.org/10.3133/70180197
[6]
Gambogi, J. (2018) Mineral Commodity Summaries 2018. U.S. Geological Survey, 132-133. https://doi.org/10.3133/70194932
[7]
REE UNO SpA (2016) Proyecto Minero el Cabrito. Declaración de Impacto Ambiental, Minera BioLantánidos.
[8]
Collao, S., González, L. and Flores, G. (2009) Mineralización de Uranio en Afloramiento Pegmatítico, VIII Región del Bio Bío, Chile. XII Congreso Geológico Chileno, Santiago, 4 p.
[9]
Collao S., Correa, K., González, L. and Velásquez, R. (2012) Inclusiones fluidas en las pegmatitas uraniníferas de Poñén, Región del Biobío Chile. XIII Congreso Geológico Chileno, Antofagasta, 3 p.
[10]
Collao, S., González, L., Hernández, L. and Jil, D. (2015) Mineralogía y Anomalías Geoquímicas de U, Th y Tierras Raras, en Pegmatita de Coyanmahuida, VIII Región, Chile. XIV Congreso Geológico Chileno, La Serena, 4 p.
[11]
Aguirre, L., Hervé, F. and Godoy, E. (1972) Distribution of Metamorphic Facies in Chile—An Outline. Krystalinikum, 9, 7-19.
[12]
Hervé, F. (1977) Petrology of the Crystalline Basement of the Nahuelbuta Mountains, South-Central Chile. In: Ishikawa, T. and Aguirre, L., Eds., Comparative Studies on the Geology of the Circum—Pacific Orogenic Belt in Japan and Chile, Japanese Society for the Promotion of Science, London, 1-52.
[13]
Duhart, P., McDonough, M., Muñoz, J., Martin, M. and Villeneuve, M. (2001) El complejo metamórfico Bahía Mansa en la Cordillera de la Costa del centro-sur de Chile (39°30’-42°00’S): Geocronología K-Ar, 40Ar/39Ar y U-Pb e implicancias en la evolución del margen sur-occidental de Gondwana. Revista Geológica de Chile, 28, 179-208. https://doi.org/10.4067/S0716-02082001000200003
[14]
Willner, A.P., Glodny, J., Gerya, T.V., Godoy, E. and Massonne, H. (2004) A Counterclockwise PTt-Path in High Pressure-Low Temperature Rocks from the Coastal Cordillera Accretionary Complex of South Central Chile: Constraints for the Earliest Stage of Subduction Mass Flow. Lithos, 73, 283-310.
https://doi.org/10.1016/j.lithos.2004.03.002
[15]
Creixell, C., Lucassen, F., Franz, G., Vásquez, P. and Figueroa, O. (2002) Petrology of the Hualpén Stock: Evidence of Late Triassic Epizonal Plutonism at the Western Margin of Gondwana (36°45’S, 73°10’W). International Symposium on Andean Geodynamics, Toulouse, 5, 167-170.
[16]
Hervé, F., Munizaga, F., Parada, M.A., Brook, M., Pankhurst, R.J., Snelling, N.J. and Drake, R. (1988) Granitoids of the Coast Range of Central Chile: Geochronology and Geologic Setting. Journal of South American Earth Sciences, 1, 185-194.
https://doi.org/10.1016/0895-9811(88)90036-3
[17]
Hervé, F., Godoy, E., Parada, M.A., Ramos, V., Rapela, C., Mpodozis, C. and Davidson, J. (1987) A General View on the Chilean-Argentine Andes, with Emphasis on Their Early History. Circum Pacific Orogenic Belts and the Evolution of the Pacific Ocean Basin. Geodynamics Series, 18, 97-114.
https://doi.org/10.1029/GD018p0097
[18]
Hervé, F. (1994) The Southern Andes between 39° and 44°S Latitude: The Geological Signature of a Transpressive Tectonic Regime Related to a Magmatic Arc. In: Reutter, K.J., Scheuber, E. and Wigger, P.J., Eds., Tectonics of the Southern Central Andes, Springer Verlag, Berlin, 243-248.
https://doi.org/10.1007/978-3-642-77353-2_17
[19]
Hervé, F., Munizaga, F., Montovani, M. and Hervé, M. (1976) Edades Rb/Sr neopa-leozoicas del Basamento Cristalino de la Cordillera de Nahuelbuta. I Congreso Geológico Chileno, Santiago, 7 p.
[20]
Lucassen, F., Franz, G., Creixell, C., Vásquez, P., Romer, R. and Figueroa, O. (2004) Distinguishing Crustal Recycling and Juvenile Addictions at Active Continental Margins: The Paleozoic to Recent Compositional Evolution of the Chilean Pacific Margin (36-41°S). Journal of South American Earth Sciences, 17, 103-119.
https://doi.org/10.1016/j.jsames.2004.04.002
[21]
Glodny, J., Echtler, H., Collao, S., Ardiles, M., Burón, P. and Figueroa, O. (2008) Differential Late Paleozoic Active Margin Evolution in South-Central Chile (37°-40°S)—The Lanalhue Fault Zone. Journal of South American Earth Sciences, 26, 397-411. https://doi.org/10.1016/j.jsames.2008.06.001
[22]
Ferraris, F. (1981) Avance geológico Hoja Los ángeles-Angol, Región del Bío-Bío. Instituto de Investigaciones Geológicas, Santiago, Vol. 5, 26 p.
[23]
Nielsen, S. (2005) The Triassic Santa Juana Formation at the Lower Biobío River, South-Central Chile. Journal of South American Earth Sciences, 19, 547-562.
https://doi.org/10.1016/j.jsames.2005.06.002
[24]
Salazar, C., Stinnesbeck, W. and Quinzio-Sinn, L.A. (2010) Ammonites from the Maastrichtian (Upper Cretaceous) Quiriquina Formation in Central Chile. Neues Jahrbuch Geologie und Paläontologie Abhandlungen, 257, 181-236.
https://doi.org/10.1127/0077-7749/2010/0072
[25]
Pineda, V. (1986) Evolución paleogeográfica de la cuenca sedimentaria Cretácico-Terciaria de Arauco. In: Frutos, J., Oyarzún, R. and Pincheira, M., Eds., Geología y recursos minerales de Chile, Universidad de Concepción, Concepción, 375-390.
[26]
Frutos, J. and Cisternas, M. (1994) Evolución tectónica de la Cuenca Terciaria de los Andes del Sur de Chile (37°30’-40°30’ lat. S.). VII Congreso Geológico Chileno, Concepción, 5 p.
[27]
Elgueta, S. and Arcos, R. (1993) Geología y modelo de sedimentación de la secuencia Cretácico-Terciaria de la Cuenca de Arauco. Empresa Nacional del Petróleo, Santiago, 32 p.
[28]
Collao, S., Alfaro, G., Cecioni, A., González, A. and Quinzio, A. (2000) Evaluación de los Recursos Metálicos de la Región del BioBío, Chile. Universidad de Concepción, Concepción, 207 p.
[29]
Stange, F., Helle, S. and Collao, S. (2018) Exploratory Potential for Gold Placer Deposits in the Coastal Range, BioBío Region, South-Central Chile. International Journal of Geosciences, 9, 635-657. https://doi.org/10.4236/ijg.2018.911038
[30]
Biró, L. (1982) Revisión y redefinición de los “Estratos de Quiriquina”, Campaniano-Maastrichtiano, en su localidad tipo en la Isla Quiriquina, 36°35’S, Chile, Sudamérica, con un perfil complementario en Cocholhue. III Congreso Geológico Chileno, Concepción, 35 p.
[31]
Hervé, F. (1988) Late Paleozoic Subduction and Accretion in Southern Chile. Episodes, 11, 183-188.
[32]
Rapela, C.W. and Pankhurst, R.J. (1992) The Granites of Northern Patagonia and the Gastre Fault System in Relation to the Break-Up of Gondwana. Geological Society of London, Special Publications, 68, 209-220.
https://doi.org/10.1144/GSL.SP.1992.068.01.13
[33]
Velásquez, R., Collao, S. and Figueroa, O. (2012) Zonación Mineralógica de la Pegmatita Poñen en el Batolito Costero del Sur, Región del Biobío-Chile. XIII Congreso Geológico Chileno, Antofagasta, 3 p.
[34]
Kubatko, K.A., Helean, K., Navrotsky, A. and Burns, P. (2006) Thermodynamics of Uranyl Minerals: Enthalpies of Formation of Uranyl Oxide Hydrates. American Mineralogist, 91, 658-666. https://doi.org/10.2138/am.2006.1856
[35]
Demartin, F., Pilati, T., Diella, V., Donzelli, S., Gentile, P. and Gramaccioli C.M. (1991) The Chemical Composition of Xenotime from Fissures and Pegmatites in the Alps. The Canadian Mineralogist, 29, 69-75.
[36]
Guastoni, A., Nestola, F., Ferraris, C. and Parodi, G. (2012) Xenotime-(Y) and Sn-Rich Thortveitite in Miarolitic Pegmatites from Baveno, Southern Alps, Italy. Mineralogical Magazine, 76, 761-767.
https://doi.org/10.1180/minmag.2012.076.3.23
[37]
Taylor, M. and Ewing, R.C. (1978) The Crystal Structure of the ThSiO4 Polymorphs: Huttonite and Thorite. Acta Crystallographica, 34, 1074-1075.
https://doi.org/10.1107/S0567740878004951
[38]
Frondel, C. (1958) Systematic Mineralogy of Uranium and Thorium. U.S. Geological Survey Bulletin No. 1064, 208-211.
[39]
Pracejus, B. (2008) The Ore Minerals under the Microscope: An Optical Guide. Elsevier, Amsterdam, 875 p.
[40]
Klein, C. and Hurlburt Jr., C.S. (1993) Manual of Mineralogy. John Wiley and Sons Inc., New York, 681 p.
[41]
Ramdohr, P. (1980) The Ore Minerals and Their Intergrowths. Pergamon Press, Oxford, 440 p.
[42]
Ercit, T.S. (2002) The Mess That Is “Allanite”. The Canadian Mineralogist, 40, 1411-1419. https://doi.org/10.2113/gscanmin.40.5.1411
[43]
Rudnick, R.L. and Gao, S. (2004) Comparison of the Continental Crust. In: Rudnick, R.L., Ed., The Crust Treatise on Geochemistry, Vol. 3, Elsevier-Pergamon, Oxford, 1-64. https://doi.org/10.1016/B0-08-043751-6/03016-4
Long, K.R., Van Gosen, B.S., Foley, N.K. and Cordier, D. (2010) The Principal Rare Earth Elements Deposits of the United States—A Summary of Domestic Deposits and a Global Perspective. U.S. Geological Survey Scientific Investigations Report 2010-5220, 96 p. https://doi.org/10.3133/sir20105220
[46]
Van Gosen, B.S., Verplanck, P.L., Seal, R.R., II, Long, K.R. and Gambogi, J. (2017) Rare-Earth Elements. In: Schulz, K.J., DeYoung, J.H., Jr., Seal, R.R. II and Bradley, D.C., Eds., Critical Mineral Resources of the United States—Economic and Environmental Geology and Prospects for Future Supply, U.S. Geological Survey Professional Paper 1802, O1-O31. https://doi.org/10.3133/pp1802O
[47]
Smith, M.P., Moore, K., Kavecsánszki, D., Finch, A.A., Kynicky, J. and Wall, F. (2016) From Mantle to Critical Zone: A Review of Large and Giant Sized Deposits of the Rare Earth Elements. Geoscience Frontiers, 7, 315-334.
https://doi.org/10.1016/j.gsf.2015.12.006
[48]
Orris, G.J. and Grauch, R.I. (2002) Rare Earth Element Mines, Deposits, and Occurrences. U.S. Geological Survey Open-File Report, Tucson, 2-189.
https://doi.org/10.3133/ofr02189
[49]
Sengupta, D. and Van Gosen, B. (2016) Placer-Type Rare Earth Element Deposits. Reviews in Economic Geology, 18, 81-100.
https://doi.org/10.1130/abs/2016AM-279551
[50]
Teh, G.H. and Lokman, I. (2002) EPMA Characterization of Ilmenite from Amang of the Kinta and Klang Valleys, Peninsular Malaysia. Bulletin of the Geological Society of Malaysia, 45, 81-92. https://doi.org/10.7186/bgsm45200212
[51]
Collao, S., Frutos, J., Helle, S. and Pincheira, M. (1982) Mineralogía y aspectos texturales de la fracción metálica de un paleoplacer y placer de playa de Fe-Ti, Región del Bio-Bio. III Congreso Geológico Chileno, 236-255.
[52]
Force, E.R. (1991) Geology of Titanium-Mineral Deposits. Geological Society of America Special Paper 259, 112 p. https://doi.org/10.1130/SPE259-p1
[53]
Angusamy, N., Loveson, V.J. and Rajamanickam, G.V. (2004) Zircon and Ilmenite from the Beach Placers of Southern Coast of Tamil Nadu, East Coast of India. Indian Journal of Marine Sciences, 33, 138-149.
https://doi.org/10.1080/10641190600704350
[54]
Glodny, J., Lohrmann, J., Echtler, H., Gräfe, K., Seifert, W., Collao, S. and Figueroa, O. (2005) Internal Dynamics of a Paleoaccretionary Wedge: Insights from Combined Isotope Tectonochronology and Sandbox Modelling of the South-Central Chilean Forearc. Earth and Planetary Science Letters, 231, 23-39.
https://doi.org/10.1016/j.epsl.2004.12.014
[55]
Willner, A.P. (2005) Pressure-Temperature Evolution of an Upper Paleozoic Paired Metamorphic Belt in Central Chile (34°-35°30’S). Journal of Petrology, 46, 1805-1833. https://doi.org/10.1093/petrology/egi035
[56]
Deckart, K., Hervé, F., Fanning, M., Ramírez, V., Calderón, M. and Godoy, E. (2014) U-Pb Geochronology and Hf-O Isotopes of Zircons from the Pennsylvanian Coastal Batholith, South-Central Chile. Andean Geology, 41, 49-82.
https://doi.org/10.5027/andgeoV41n1-a03
[57]
Alarcón, A., álvarez, F., Collao, S. and Hernández, L. (2018) Caracterización óptica y composicional de los minerales portadores de REE+Y, U, Th, en las pegmatitas Coyanmahuida y Poñén, Región del Biobío, Chile. XV Congreso Geológico Chileno, Concepción, 3 p.
[58]
Roy, P.S. and Whitehouse, J. (2003) Changing Pliocene Sea Levels and Formation of Heavy Mineral Beach Placers in the Murray Basin, Southeastern Australia. Economic Geology, 98, 975-983. https://doi.org/10.2113/gsecongeo.98.5.975
[59]
Hou, B., Frakes, L.A., Sandiford, M., Worrall, L., Keeling, J. and Alley, N.F. (2008) Cenozoic Eucla Basin and Associated Paleovalleys, Southern Australia—Climatic and Tectonic Influences on Landscape Evolution, Sedimentation and Heavy Mineral Accumulation. Sedimentary Geology, 203, 112-130.
https://doi.org/10.1016/j.sedgeo.2007.11.005
[60]
Hou, B., Keeling, J., Reid, A., Fairclough, M., Warland, I., Belousova, E., Frakes, L. and Hocking, R. (2011) Heavy Mineral Sands in the Eucla Basin, Southern Australia—Deposition and Province-Scale Prospectivity. Economic Geology, 106, 687-712.
https://doi.org/10.2113/econgeo.106.4.687
[61]
Roy, P.S., Whitehouse, J., Cowell, P.J. and Oakes, G. (2000) Mineral Sands Occurrences in the Murray Basin, Southeastern Australia. Economic Geology, 95, 1107-1128. https://doi.org/10.2113/95.5.1107
[62]
Melnick, D., Bookhagen, B., Echtler, H. and Strecker, M. (2006) Coastal Deformation and Great Subduction Earthquakes, Isla Santa María, Chile (37°S). Geological Society of America Bulletin, 118, 17 p. https://doi.org/10.1130/B25865