全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Health  2019 

A Peptidomic Analysis of the Potential Comorbidity Biomarkers for Type 2 Diabetes Mellitus and Alzheimer’s Disease

DOI: 10.4236/health.2019.116065, PP. 817-826

Keywords: Type 2 Diabetes Mellitus (T2DM), Alzheimer’s Disease (AD), Comorbidity Biomarkers, Osteopontin, Histones

Full-Text   Cite this paper   Add to My Lib

Abstract:

Objective: To investigate the potential comorbidity biomarkers for Type 2 Diabetes Mellitus (T2DM) and Alzheimer’s disease (AD). Methods: This is a randomized case-control study. There are three groups: 1) normal control group included 32 healthy elderly people in the hospital physical examination; 2) 30 patients with T2DM group; and 3) AD group has 28 cases. On-line reversed-phase liquid chromatography separation, tandem mass spectrometry analysis and iTRAQ quantification were used for identification of peptidomic analysis, then detection of three comorbidity biomarkers might be associated with T2DM and AD by ELISA. Results: The Peptidomic Analysis of the potential comorbidity biomarkers for T2DM and the AD group includes Osteopontin (OPN), Isoform 2 of Histone H2Btype 2-F and Histone H4. These potential comorbidity biomarkers for T2DM and the AD group are significantly increased than normal control group. OPN concentrations are 1.67 (0.13 - 2.63) mmol/L in the normal control group, 3.15 (1.51 - 5.35) mmol/L in the T2DM group, and 7.66 (3.55 - 15.38) mmol/L in the AD group. Histone H4 concentrations in three groups respectively are 0.21 ± 0.036 mmol/L (normal control), 0.21 ± 0.046 mmol/L (T2DM) and 0.21 ± 0.034 mmol/L(AD). Isoforms 2 of Histone H2Btype 2-F are 1.73 (0.12 - 2.60) mmol/L, 4.71 (1.26 - 6.84) mmol/L and 9.30 (0 - 20.8) mmol/Lin three groups respectively. Conclusion: The inflammatory mechanism may lead to an increase of histone content in the urine of AD and T2DM patients. Clinical test of these potential comorbidity biomarkers Histones and Osteopontin would be the diagnosis of comorbidity AD and T2DM.

References

[1]  Gtz, J., Ittner, L.M. and Lim, Y.A. (2009) Common Features between Diabetes Mellitus and Alzheimer’s Disease. Cellular and Molecular Life Sciences, 66, 1321-1325.
https://doi.org/10.1007/s00018-009-9070-1
[2]  Jin, W. and Patti, M.E. (2009) Genetic Determinants and Molecular Pathways in the Pathogenesis of Type 2 Diabetes. Clinical Science, 116, 99-111.
https://doi.org/10.1042/CS20080090
[3]  Paolisso, G. and Giugliano, D. (1996) Oxidative Stress and Insulin Action: Is There a Relationship? Diabetologia, 39, 357-363.
https://doi.org/10.1007/s001250050454
[4]  Beydoun, M.A., Lhotsky, A., Wang, Y., Dal Forno, G., An, Y., Metter, E.J., Ferrucci, L., O’Brien, R. and Zonderman, A.B. (2008) Association of Adiposity Status and Changes in Early to Mid-Adulthood with Incidence of Alzheimer’s Disease. American Journal of Epidemiology, 168, 1179-1189.
https://doi.org/10.1093/aje/kwn229
[5]  Dela Monte, S.M. and Wands, J.R. (2008) Alzheimer’s Disease Is Type 3 Diabetes-Evidence Reviewed. Journal of Diabetes Science and Technology, 2, 1101-1113.
https://doi.org/10.1177/193229680800200619
[6]  Qiu, W.Q. and Folstein, M.F. (2006) Insulin, Insulin-Degrading Enzyme and Amyloid-Beta Peptide in Alzheimer’s Disease: Review and Hypothesis. Neurobiology of Aging, 27, 190-198.
https://doi.org/10.1016/j.neurobiolaging.2005.01.004
[7]  Hotamisligi, G.S. (2007) Inflammation and Metabolic Disorders. Nature, 444, 860-867.
https://doi.org/10.1038/nature05485
[8]  Mcgeer, P.L., Rogers, J. and Mcgeer, E.G. (1994) Neuroimmune Mechanisms in Alzheimer Disease Pathogenesis. Alzheimer Disease & Associated Disorders, 8, 149-158.
https://doi.org/10.1097/00002093-199408030-00001
[9]  Reddy, P.H., Tripathi, R., Troung, Q., Tirumala, K., Reddy, T.P., Anekonda, V., Shirendeb, U.P., Calkins, M.J., Reddy, A.P., Mao, P. and Manczak, M. (2012) Abnormal Mitochondrial Dynamics and Synaptic Degeneration as Early Events in Alzheimer’s Disease: Implications to Mitochondria-Targeted Antioxidant Therapeutics. Biochimica et Biophysica Acta, 1822, 639-649.
https://doi.org/10.1016/j.bbadis.2011.10.011
[10]  Verdelho, A., Madureira, S., Moleiro, C., et al. (2010) White Matter Changes and Diabetes Predict Cognitive Decline in the Elderly: The LADIS Study. Neurology, 75, 160-167.
https://doi.org/10.1212/WNL.0b013e3181e7ca05
[11]  Kawarabayashi, T., Shoji, M., Younkin, L.H., et al. (2004) Dimeric Amyloid Beta Protein Rapidly Accumulates in Lipid Rafts Followed by Apolipoprotein E and Phosphorylated Tau Accumulation in the Tg2576 Mouse Model of Alzheimer’s Disease. Journal of Neuroscience, 24, 3801-3809.
https://doi.org/10.1523/JNEUROSCI.5543-03.2004
[12]  Yan, L.M., Velkova, A., Tatarek-Nossol, M., et al. (2007) IAPP Mimic Blocks A Beta Cytotoxic Self-Assembly: Cross-Suppression of Amyloid Toxicity of A Beta and IAPP Suggests a Molecular Link between Alzheimer’s Disease and Type II Diabetes. Angewandte Chemie International Edition, 46, 1246-1252.
https://doi.org/10.1002/anie.200604056
[13]  Kahn, S.E., Andrikopoulos, S. and Verchere, C.B. (1999) Islet Amyloid: A Long-Recognized But Underappreciated Pathological Feature of Type 2 Diabetes. Diabetes, 48, 241-253.
https://doi.org/10.2337/diabetes.48.2.241
[14]  Abbas, T., Faivre, E. and Hlscher, C. (2009) Impairment of Synaptic Plasticity and Memory Formation in GLP-1 Receptor KO Mice: Interaction between Type 2 Diabetes and Alzheimer’s Disease. Behavioural Brain Research, 205, 265-271.
https://doi.org/10.1016/j.bbr.2009.06.035
[15]  Wang, J., Yao, L., Li, B., Meng, Y., Ma, X., Lai, Y., Si, E., Ren, P., Yang, K., Shang, X. and Wang, H. (2016) Comparative Proteomic Analysis of Cultured Suspension Cells of the Halophyte Halogetonglomeratus by iTRAQ Provides Insights into Response Mechanisms to Salt Stress. Frontiers in Plant Science, 7, 110.
https://doi.org/10.3389/fpls.2016.00110
[16]  Silva, P.F., Garcia, V.A., Domelles Ada, S., et al. (2012) Memory Impairment Induced by Brain Iron Overload Is Accompanied by Reduced H3K9 Acetylation and Ameliorated by Sodium Butyrate. Neuroscience, 200, 42-49.
https://doi.org/10.1016/j.neuroscience.2011.10.038
[17]  Fischer, A., Sananbenesi, F., Mungenast, A., et al. (2010) Targeting the Correct HDAC(s) to Treat Cognitive Disorders. Trends in Pharmacological Sciences, 31, 605-617.
https://doi.org/10.1016/j.tips.2010.09.003
[18]  Perez, M., Santa-Maria, I., Gomez de Barreda, E., et al. (2009) Tau-An Inhibitor of Deacetylase HDAC6 Function. Journal of Neurochemistry, 109, 1755-1766.
https://doi.org/10.1111/j.1471-4159.2009.06102.x
[19]  Huang, H., Chen, H.W., Evankovich, J., et al. (2013) Histones Activate the NLRP3 Inflammasome in Kupffer Cells during Sterile Inflammatory Liver Injury. The Journal of Immunology, 191, 2665-2679.
https://doi.org/10.4049/jimmunol.1202733
[20]  Friggeri, A., Banerjee, S., Xie, N., et al. (2012) Extracellular Histones Inhibit Efferocytosis. Molecular Medicine, 18, 825-833.
https://doi.org/10.2119/molmed.2012.00005
[21]  Pemberton, A.D. and Brown, J.K. (2010) In Vitro Interactions of Extracellular Histones with LDL Suggest a Potential Proatherogenic Role. PLoS ONE, 5, e9884.
https://doi.org/10.1371/journal.pone.0009884
[22]  Susztak, K., Bottinger, E., Novetsky, A., et al. (2004) Molecular Profiling of Diabetic Mouse Kidney Reveals Novel Genes Linked to Glomerular Disease. Diabetes, 53, 784-794.
https://doi.org/10.2337/diabetes.53.3.784
[23]  Yamaguehi, H., Igarashi, M., Hirata, A., et al. (2004) Progression of Diabetic Nephropathy Enhances the Plasma Osteopontin Level in Type 2 Diabetic Patients. Endocrine Journal, 51, 499.
https://doi.org/10.1507/endocrj.51.499
[24]  Lorenzen, J., Shah, R., Biser, A., et al. (2008) The Role of Osteopontin in the Development of Albuminuria. Journal of the American Society of Nephrology, 19, 884-890.
https://doi.org/10.1681/ASN.2007040486
[25]  Nicholas, S.B., Liu, J., Kim, J., et al. (2010) Critical Role for Osteopontin in Diabetic Nephrnpathy. Kidney International, 77, 588-600.
https://doi.org/10.1038/ki.2009.518
[26]  Wirths, O., Breyhan, H., Marcello, A., et al. (2010) Inflammatory Changes Are Tightly Associated with Neurodegeneration in the Brain and Spinal Cord of the APP/PS1KI Mouse Model of Alzheimer’s Disease. Neurobiology of Aging, 31, 747-757.
https://doi.org/10.1016/j.neurobiolaging.2008.06.011
[27]  Simonsen, A.H., Mcguire, J., Hansson, O., et al. (2007) Novel Panel of Cerebrospinal Fluid Biomarkers for the Prediction of Progression to Alzheimer Dementia in Patients with Mild Cognitive Impairment. Archives of Neurology, 64, 366-370.
https://doi.org/10.1001/archneur.64.3.366%

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133