全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Computed Tomography Using a Low Tube Voltage Technique for Acute Ischemic Stroke

DOI: 10.4236/act.2019.82003, PP. 24-35

Keywords: Low Tube Voltage Technique, Computed Tomography, Acute Ischemic Stroke

Full-Text   Cite this paper   Add to My Lib

Abstract:

Computed tomography (CT) is commonly used to assess for cerebral hemorrhage and acute ischemic stroke. We investigated the accuracy of CT using a low tube voltage technique in acute ischemic stroke. We compared the standard deviation (SD), contrast between gray and white matter, and contrast-to-noise ratio (CNR) between three groups (120 kV 500 mAs, 100 kV 850 mAs, and 100 kV 750 mAs using hybrid iterative reconstruction) in 50 patients without lesions, and visual evaluation using the normalized rank approach was also performed. The mean value of SD was 4.02, 4.22, and 4.04, respectively, and the contrast between gray and white matter was 7.08, 8.66, and 8.68 HU, respectively; in addition, the CNR was 1.77, 2.06, and 2.15, respectively. The difference between the 100 kV and 120 kV groups was significant (p < 0.01). Visual evaluation showed a significant difference between the 100 and 120 kV groups (p < 0.05).

References

[1]  Powers, W.J., Derdeyn, C.P., Biller, J., et al. (2015) AHA/ASA Focused Update of the 2013 Guidelines for the Early Management of Patients with Acute Ischemic Stroke Regarding Endovascular Treatment: A Guideline for Healthcare Professionals from the American Heart Association/American Stroke Association. Stroke, 46, 3020-3035.
https://doi.org/10.1161/STROKEAHA.115.010716
[2]  Barber, P.A., Demchuk, A.M., Zhang, J., et al. (2000) Validity and Reliability of a Quantitative Computed Tomography Score in Predicting Outcome of Hyperacute Stroke before Thrombolytic Therapy. ASPECTS Study Group. The Lancet, 355, 1670-1674.
https://doi.org/10.1016/S0140-6736(00)02237-6
[3]  Pexman, J.H., Barber, P.A., Hill, M.D., et al. (2001) Use of the Alberta Stroke Program Early CT Score (ASPECTS) for Assessing CT Scans in Patients with Acute Stroke. American Journal of Neuroradiology, 22, 1534-1542.
[4]  Dzailowski, I., Hill, M.D., Coutts, S.B., et al. (2006) Extend of Early Ischemic Changes on Computed Tomography (CT) before Thrombolysis: Prognostic Value of the Alberta Stroke Program Early CT Score in ECASS II. Stroke, 37, 973-978.
https://doi.org/10.1161/01.STR.0000206215.62441.56
[5]  Hirano, T., Sasaki, M., Tomura, N., et al. (2012) Japan Alteplase Clinical Trial Group: Low Alberta Stroke Program Early Computed Tomography Score within 3 Hours of Onset Predicts Subsequent Symptomatic Intracranial Hemorrhage in Patients Treated with 0.6 mg/kg Alteplase. Journal of Stroke and Cerebrovascular Diseases, 21, 898-902.
https://doi.org/10.1016/j.jstrokecerebrovasdis.2011.05.018
[6]  Nezu, T., Koga, M., Nakagawara, J., et al. (2011) Early Ischemic Change on CT Versus Diffusion-Weighted Imaging for Patients with Stroke Receiving Intravenous Recombinant Tissue-Type Plasminogen Activator Therapy: Stroke Acute Management with Urgent Risk-Factor Assessment and Improvement (SAMURAI) rt-PA Registry. Stroke, 42, 2196-2200.
https://doi.org/10.1161/STROKEAHA.111.614404
[7]  Kim, E.Y., Ryoo, J.W., Roh, H.G., et al. (2006) Reversed Discrepancy between CT and Diffusion-Weighted MR Imaging in Acute Ischemic Stroke. American Journal of Neuroradiology, 27, 1990-1995.
[8]  Kawano, H., Hirano, T., Nakajima, M., et al. (2013) Diffusion-Weighted Magnetic Resonance Imaging May Underestimate Acute Ischemic Lesions: Cautions on Neglecting a Computed Tomography-Diffusion-Weighted Imaging Discrepancy. Stroke, 44, 1056-1061.
https://doi.org/10.1161/STROKEAHA.111.000254
[9]  Puetz, V., Dzialowski, I., Hill, M.D., et al. (2008) Calgary CTA Study Group: Intracranial Thrombus Extent Predicts Clinical Outcome, Final Infarct Size and Hemorrhagic Transformation in Ischemic Stroke: The Clot Burden Score. International Journal of Stroke, 3, 230-236.
https://doi.org/10.1111/j.1747-4949.2008.00221.x
[10]  Sillanpaa, N., Saarinen, J.T., Rusanen, H., et al. (2012) Location of the Clot and Outcome of Perfusion Defects in Acute Anterior Circulation Stroke Treated with Intravenous Thrombolysis. American Journal of Neuroradiology, 34, 100-106.
https://doi.org/10.3174/ajnr.A3149
[11]  Tan, I.Y., Demchuk, A.M., Hopyan, J., et al. (2009) CT Angiography Clot Burden Score and Collateral Score: Correlation with Clinical and Radiologic Outcomes in Acute Middle Cerebral Artery Infarct. American Journal of Neuroradiology, 30, 525-531.
https://doi.org/10.3174/ajnr.A1408
[12]  Thierfelder, K.M., Sommer, W.H., Ertl-Wagner, B., et al. (2016) Prediction of Stent-Retriever Thrombectomy Outcomes by Dynamic Multidetector CT Angiography in Patients with Acute Carotid T or MCA Occlusions. American Journal of Neuroradiology, 37, 1296-1302.
https://doi.org/10.3174/ajnr.A4694
[13]  Menon, B.K., Qazi, E., Nambiar, V., et al. (2015) IMS Investigators: Differential Effect of Baseline CTA Collaterals on Clinical Outcome in Patients Enrolled in the IMS-III Trial. Stroke, 46, 1239-1244.
https://doi.org/10.1161/STROKEAHA.115.009009
[14]  Nambiar, V., Sohn, S.I., Almekhlafi, M.A., et al. (2014) CTA Collateral Status and Response to Recanalization in Patients with Acute Ischemic Stroke. American Journal of Neuroradiology, 35, 884-890.
https://doi.org/10.3174/ajnr.A3817
[15]  Souza, L.C., Yoo, A.J., Chaudhry, Z.A., et al. (2012) Malignant CTA Collateral Profile Is Highly Specific for Large Admission DWI Infarct Core and Poor Outcome in Acute Stroke. American Journal of Neuroradiology, 33, 1331-1336.
https://doi.org/10.3174/ajnr.A2985
[16]  Menon, B.K., d’Esterre, C.D., Qazi, E.M., et al. (2015) Multiphase CT Angiography: A New Tool for the Imaging Triage of Patients with Acute Ischemic Stroke. Radiology, 275, 510-520.
https://doi.org/10.1148/radiol.15142256
[17]  Yan den Wijngaard, I.R., Holswilder, G., Wermer, M.J., et al. (2016) Assessment of Collateral Status by Dynamic CT Angiography in Acute MCA Stroke: Timing of Acquisition and Relationship with Final Infarct Volume. American Journal of Neuroradiology, 37, 1231-1236.
https://doi.org/10.3174/ajnr.A4746
[18]  Lin, L., Bivard, A., Krishnamurthy, V., et al. (2016) Whole-Brain CT Perfusion to Quantify Acute Ischemic Penumbra and Core. Radiology, 279, 876-887.
https://doi.org/10.1148/radiol.2015150319
[19]  Lansberg, M.G., Christensen, S., Kemp, S., et al. (2017) CT Perfusion to Predict Response to Recanalization in Ischemic Stroke Project (CRISP) Investigators: Computed Tomographic Perfusion to Predict Response to Recanalization in Ischemic Stroke. Annals of Neurology, 81, 849-856.
https://doi.org/10.1002/ana.24953
[20]  Campbell, B.C., Christensen, S., Levi, C.R., et al. (2011) Cerebral Blood Flow Is the Optimal CT Perfusion Parameter for Assessing Infarct Core. Stroke, 42, 3435-3440.
https://doi.org/10.1161/STROKEAHA.111.618355
[21]  Inoue, M., Mlynash, M., Straka, M., et al. (2012) Patients with the Malignant Profile within 3 Hours of Symptom Onset Have Very Poor Outcomes after Intravenous Tissue-Type Plasminogen Activator Therapy. Stroke, 43, 2494-2496.
https://doi.org/10.1161/STROKEAHA.112.653329
[22]  Waaijer, A., Prokop, M., Velthuis, B.K., Bakker, C.J.G., et al. (2007) Circle of Willis at CT Angiography: Dose Reduction and Image Quality-Reducing Tube Voltage and Increasing Tube Current Settings. Radiology, 242, 832-839.
https://doi.org/10.1148/radiol.2423051191
[23]  Luo, S., Zhang, L.J., Meinel, F.G., et al. (2014) Low Tube Voltage and Low Contrast Material Volume Cerebral CT Angiography. European Radiology, 24, 1677-1685.
https://doi.org/10.1007/s00330-014-3184-z
[24]  Cho, C.S., Chung, T.S., Oh, D.K., et al. (2012) Cerebral Computed Tomography Angiography Using a Low Tube Voltage (80 kVp) and a Moderate Concentration of Iodine Contrast Material: A Quantitative and Qualitative Comparison with Conventional Computed Tomography Angiography. Investigative Radiology, 47, 142-147.
https://doi.org/10.1097/RLI.0b013e31823076a4
[25]  Huda, W., Ogden, K.M., Khorasani, M.R., et al. (2008) Converting Dose Length Product to Effective Dose at CT. Radiology, 248, 995-1003.
https://doi.org/10.1148/radiol.2483071964
[26]  Gupta, A.K., Nelson, R.C., Johnson, G.A., et al. (2003) Optimization of Eight-Element Multi-Detecter Row Helical CT Technology for Evaluation of the Abdomen. Radiology, 227, 739-745.
https://doi.org/10.1148/radiol.2273020591
[27]  Nakamae, M. (2000) Study of the Reliability of Visual Evaluation by the Ranking Method Analysis of Ordinal Scale and Psychological Scaling Using the Normalized Rank Approach. Japanese Journal of Radiological Technology, 56, 725-730.
https://doi.org/10.6009/jjrt.KJ00001356925
[28]  von Kummer, R., Bourquain, H., Bastianello, S., Bozzao, L., Manelfe, C., Meier, D. and Hacke, W. (2001) Early Prediction of Irreversible Brain Damage after Ischemic Stroke at CT. Radiology, 219, 95-100.
https://doi.org/10.1148/radiology.219.1.r01ap0695
[29]  Lev, M.H., Farkas, J., Gemmete, J.J., Hossain, S.T., Hunter, G.J., Koroshetz, W.J., et al. (1999) Acute Stroke: Improved Nonenhanced CT Detection-Benefits of Soft-Copy Interpretation by Using Variable Window Width and Center Level Settings. Radiology, 213, 150-155.
https://doi.org/10.1148/radiology.213.1.r99oc10150
[30]  Nishimura, K., Tanaka, C., Fukao, M., et al. (2016) The Detectability of Iterative CT Reconstruction for Low-Contrast Lesions in Hyperacute Cerebral Infarction: Assessment with Newly Developed Dedicated Head Phantoms. Japanese Journal of Radiological Technology, 72, 157-164.
https://doi.org/10.6009/jjrt.2016_JSRT_72.2.157
[31]  Goldstone, K.E. (1990) Tissue Substitutes in Radiation Dosimetry and Measurement. ICRU Report 44, International Commission on Radiation Units and Measurements, 41.
[32]  Shirotani, T. (1995) Attenuation Coefficients of Human Tissues and Tissue Substitutes. Japan Atomic Energy Research Institute, Ibaraki, 95-002.
[33]  Hubbell, J.H., et al. (1969) Photon Cross Sections, Attenuation Coefficients and Energy Absorption Coefficients from 10 keV to 100 GeV. Natl. Stand. Ref. Data, 29.
https://doi.org/10.6028/NBS.NSRDS.29
[34]  Urikura, A., Hara, T., Ichikawa, K., et al. (2016) Objective Assessment of Low-Contrast Computed Tomography Images with Iterative Reconstruction. Physica Medica, 32, 992-998.
https://doi.org/10.1016/j.ejmp.2016.07.003

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133