全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Preparation and Characterization of Activated Carbon Based on Wood (Acacia auriculeaformis, C?te d’Ivoire)

DOI: 10.4236/jeas.2019.92004, PP. 63-82

Keywords: Activated Carbon, Acacia auriculeaformis, Chemical Activation, Phosphoric Acid, Sodium Hydroxide, Sodium Chloride

Full-Text   Cite this paper   Add to My Lib

Abstract:

The objective of this work is to prepare one of the best activated carbon (CA) based on wood (Acacia auriculeaformis). The chemical activation method was used for varying the chemical agent namely phosphoric acid H3PO4 (CAA), sodium hydroxide NaOH (CAB), and sodium chloride NaCl (CAS). The physico-chemical analysis of the three activated carbons indicated that, under the conditions of preparation, the activated carbons possess activation efficiencies lower than 50% (41.81% for CAA, 26.25% for CAB and 48.87% for CAS), low ash content (CAA: 5.00%, CAB: 14.90 and CAS: 6.60%) and iodine values ranging from 190.35 mg/g to 380.71 mg/g, suggesting that the good quality of the prepared activated carbon. The surface functional groups using Boehm test and the zero point charge (pHZPC) methods confirmed the acidic, basic and neutral character for CAA, CAB and CAS respectively (CAA: pHZPC = 4.8, CAB: pHZPC = 8.2, CAS: pHZPC = 6.8). The surface specific areas were determined through the liquid phase adsorption of acetic acid and methylene blue using the Langmuir method and BET analysis. Also, the porosity was determined. The BET surface areas of CAA, CAB and CAS were respectively 561.60 m2/g, 265.00 m2/g and 395.40 m2/g. The influence of chemical activation agent on pores formation was confirmed by scanning electron microscopic (SEM) analysis. CAA was selected as the best activated carbon because of its good surface area and good pore volume compared to those found in the literature. Therefore, its application as an adsorbent for effluents treatment could be explored. In addition, the best activating agent for coal from Acacia auriculeaformis was found to be phosphoric acid.

References

[1]  Hecini, L. and Achour, S. (2014) Coagulation-floculation au sulfate d’aluminium de composés organiques phénoliques et effet de sels de calcium et de magnésium. Revue des Sciences de l’Eau, 27, 271-280.
https://doi.org/10.7202/1027810ar
[2]  Lamia, A., Jihane, C., Abdelkarim, C. and Amina, B. (2009) Traitement biologique des eaux usées textiles-étude de cas: Station d’épuration des eaux usées textiles. European Journal of Water Quality, 14, 27-37.
https://doi.org/10.1051/asees/2009005
[3]  Zaviska, F. (2011) Modélisation du traitement de micropolluants organiques par oxydation électrochimique. Thèse, Québec, Université du Québec, Institut national de la recherche scientifique, Doctorat en Sciences de l’Eau, 385.
[4]  Trabelsi, S. (2011) Etudes de traitement des lixiviats des déchets urbains par les procédés d’oxydation avancée photochimiques et électrochimiques: Application aux lixiviats de la décharge tunisienne “Jebel Chakir”. Sciences de la Terre, Doctorat Université Paris-Est, Français.
[5]  Brahima, S., Patrick, D., Géraldo, B., Jean, F.B. and Marc, H. (2011) état actuel des connaissances des procédés de bioréacteur à membrane pour le traitement et la réutilisation des eaux usées industrielles et urbaines. Revue des Sciences de l’Eau, 24, 283-310.
https://doi.org/10.7202/1006478ar
[6]  Meçabih, Z., Kacimi, S. and Bouchikhi, B. (2006) Adsorption des matières organiques des eaux usées urbaines sur la bentonite modifiée par Fe (III), Al (III) et Cu (II). Revue des Sciences de l’Eau, 19, 23-31.
https://doi.org/10.7202/012261ar
[7]  Sakr, F., Sennaoui, A., Elouardi, M., Tamimi, M. and Assabbane, A. (2015) étude de l’adsorption du Bleu de Méthylène sur un biomatériau à base de Cactus. Journal of Materials and Environmental Science, 6, 397-406.
[8]  Danish, M., Hashim, R., Ibrahim, M.N.M., Rafatullah, M., et al. (2011) Characterization of Acacia Mangium Wood Activated Carbons Prepared in the Presence of Basic Activating Agents. BioRessourses, 6, 3019-3033.
[9]  Shen, Y.S., Wanga, S.L., Tzou, Y.M., Yan, Y.Y.I. and Kuan, W.H. (2012) Removal of Hexavalent Cr by Coconut Coir and Derived Chars—The Effect of Surface Functionality. Bioresource Technology, 104, 165-172.
https://doi.org/10.1016/j.biortech.2011.10.096
[10]  Basta, A.H., Fierro, V., Saied, H. and Celzard, A. (2011) Effect of Deashing Rice Straws on Their Derived Activated Carbons Produced by Phosphoric Acid Activation. Biomass and Bioenergy, 35, 1954-1959.
https://doi.org/10.1016/j.biombioe.2011.01.043
[11]  Balogoun, C.K., Bawa, M.L., Osseni, S. and Aina, M. (2015) Préparation des charbons actifs par voie chimique à l’acide phosphorique à base de coque de noix de coco. International Journal of Biological and Chemical Sciences, 9, 563-580.
https://doi.org/10.4314/ijbcs.v9i1.48
[12]  Gbamele, K.S., Atheba, G.P., Dongui, B.K., Drogui, P., Didier, R. and Kra, D.O. (2016) Contribution à l’étude de quatre charbons activés à partir des coques de noix de coco. Afrique Science, 12, 229-245.
[13]  Bossombra, K.V., Tchirioua, E., Ekou, L. and Trong-On, D. (2018) Nitrogen Enrichment of Activated Carbon Made from Coconut Shell of Ivory Coast and Its Application in Cd2+ Ions Removal. Australian Journal of Basic and Applied Sciences, 12, 38-44.
[14]  Sahu, J.N., Acharya, J. and Meikap, B.C. (2010) Optimization of Production Conditions for Activated Carbons from Tamarind wood by Zinc Chloride Using Response Surface Methodology. Bioresource Technology, 101, 1974-1982.
https://doi.org/10.1016/j.biortech.2009.10.031
[15]  Nko’o Abuiboto, M.C., Avom, J. and Mpon, R. (2016) évaluation des propriétés de charbons actifs de résidus de Moabi (Baillonella toxisperma Pierre) par adsorption d’iode en solution aqueuse. Revue des sciences de l’eau, 29, 51-60.
https://doi.org/10.7202/1035716ar
[16]  Lyubchik, S.B., Benaddi, H., Shapranov, V.V. and Beguin, F. (1997) Activated Carbons from Chemically Treated Anthracite. Carbon, 35, 162-165.
https://doi.org/10.1016/S0008-6223(97)81121-9
[17]  Romero-Anaya, A., Ouzzine, M., Lillo-Rodenas, M. and Linares-Solano, A. (2014) Spherical Carbons: Synthesis, Characterization and Activation Processes. Carbon, 68, 296-307.
https://doi.org/10.1016/j.carbon.2013.11.006
[18]  Verla, A., Horsfall, M., Verla, E., Spiff, A. and Ekpete, O. (2012) Preparation and Characterization of Activated Carbon from Fluted Pumpkin (Telfairiaoccidentalis Hook.F) Seed Shell. Asian Journal of Natural & Applied Sciences, 1, 39-50.
[19]  Dolasa, H., Sahinb, O., Sakac, C. and Demirb, H. (2011) A New Method on Producing High Surface Area Activated Carbon: The Effect of Salton the Surface Area and the Pore Size Distribution of Activated Carbon Prepared from Pistachio Shell. Chemical Engineering Journal, 166, 191-197.
https://doi.org/10.1016/j.cej.2010.10.061
[20]  Tchakala, I., Bawa, L.M., Djaneye-Boundjou, G., Doni, K.S., Nambo, P. (2012) Optimisation du procédé de préparation des Charbons Actifs par voie chimique (H3PO4) à partir des tourteaux de Karité et des tourteaux de Coton. International Journal of Biological and Chemical Sciences, 6, 461-478.
https://doi.org/10.4314/ijbcs.v6i1.42
[21]  Altenor, S., Carene, B., Emmanuel, E., Lambert, J., Ehrhardt, J.-J. and Gaspard, S. (2009) Adsorption Studies of Methylene Blue and Phenol onto Vetiver Roots Activated Carbon Prepared by Chemical Activation. Journal of Hazardous Materials, 165, 1029-1039.
https://doi.org/10.1016/j.jhazmat.2008.10.133
[22]  Kra, D.O., Kouadio, N.A., Atheba, G.P., Coulibaly, B., Allou, N.B., Gbassi, K.G. and Trokourey, A. (2015) Modélisation des propriétés adsorbantes de charbons activés issus de deux variétés d’acacia (auriculiformis et mangium). International Journal Of Innovation and Scientific Research, 13, 542-553.
[23]  Mezerette, C. and Vergnet, L.F. (1994) La voie thermochimique. In: ANONYME-Guide Biomasse Energie, Collection études et filières. 144-198.
[24]  Honoré, P., Kouakou, U., Dembele, A., Yapo, A.J. and Trokourey, A. (2014) Preparation and Characterization of Activated Carbons Based on Peanut Shell (Arachis hypogaea) Green Soya Shell (Vigna radiata). International Journal of Science and Research, 3, 933-937.
[25]  Gueye, M. (2015) Développement de charbon actif à partir de biomasses ligno-cellulosiques pour des applications dans le traitement de l’eau. Thèse, Institut International de l’ingénierie de l’Eau et l’Environnement (2iE), Ouaga/B. Faso.
[26]  Ousmaila, S.M., Adamou, Z. and Ibrahim, D. (2016) Préparation et caractérisation de charbons actifs à base de coques de noyaux de Balanites Eagyptiaca et de Zizyphus Mauritiana. Journal de la Société Ouest-Africaine de Chimie, 41, 59-67.
[27]  Boehm, H. (1966) Chemical Identification of Surface Groups. In: Advances in Catalysis, Academic Press, London, 179-274.
https://doi.org/10.1016/S0360-0564(08)60354-5
[28]  Bamba, D. (2007) Elimination du diuron des eaux par des techniques utilisant les ressources naturelles de Cote d’ivoire: Photocatalyse solaire et charbons actifs de noix de coco. Thèse de Doctorat des Universités de Cocody-Abidjan et de Metz.
[29]  Vasu, A.E. (2008) Surface Modification of Activated Carbon for Enhancement of Nickel (II) Adsorption. E-Journal of Chemistry, 5, 814-819.
https://doi.org/10.1155/2008/610503
[30]  Avom, J., Ketcha, M., Matip, M. and Germain, P. (2001) Adsorption de l’acide acétique par des charbons d’origine végétale. African Journal of Science and Technology, Science and Engineering, 2, 1-7.
https://doi.org/10.4314/ajst.v2i2.44663
[31]  Kifuani, K.M.A., Noki, V.P., Ndelo, D.P.J., Mukana, W.M.D. and Ekoko, B.G. (2012) Adsorption de la quinine bichlorhydrate sur un charbon actif peu coûteux à base de la Bagasse de canne à sucre imprégnée de l’acide phosphorique. International Journal of Biological and Chemical Sciences, 6, 1337-1359.
https://doi.org/10.4314/ijbcs.v6i3.36
[32]  Brunauer, S., Emmett, P.H. and Teller, E. (1938) Adsorption of Gases in Multimolecular Layers. Journal of the American Chemical Society, 60, 309-319.
https://doi.org/10.1021/ja01269a023
[33]  Tatianne, F.D.O. (2011) étude d’un procédé de dépollution basé sur le couplage ozone/charbon actif pour l’élimination des phtalates en phase aqueuse. Alimentation et Nutrition,Université d’Orléans, Français.
[34]  Haimour, N.M. and Emeish, S. (2006) Utilization of Date Stones for Production of Activated Carbon Using Phosphoric Acid. Waste Management, 26, 651-660.
https://doi.org/10.1016/j.wasman.2005.08.004
[35]  Linares, S., Angel, L., Maria, M.L., Juan, K. and Mirko, R.A. (2012) NaOH and KOH for Preparing Activated Carbons Used in Energy and Environmental Applications. International Journal of Energy, Environment and Economics, 20, 59-91.
[36]  Ayvral, C. (2009) Elimination des polluants aromatiques par oxydation catalytique sur charbon actif. Thèse de Doctorat, Université de Toulouse.
[37]  Gueu, S. (2007) Traitement de la pollution métallique et organique par les charbons actifs des coques de noix de coco et des graines de palmiste. Thèse de Doctorat de 3eme cycle, Université de Cocody.
[38]  Silex International Charbon actif haut qualité, T2, Activ’ OG8*30.
http://www.silexinternational.com/
[39]  Wibowo, N., Setyadhi, L., Wibowo, D., Setiawan, J. and Ismadji, S. (2007) Adsorption of Benzene and Toluene from Aqueous Solutions onto Activated Carbon and Its Acid and Heat Treated Forms: Influence of Surface Chemistry on Adsorption. Journal of Hazardous Materials, 146, 237-242.
https://doi.org/10.1016/j.jhazmat.2006.12.011
[40]  Atheba, G.P., Allou, N.B., Dongui, B.K., Kra, D.O., Gbassi, K.G. and Trokourey, A. (2015) Butyl Paraben Adsorption on Coal-Based on Low-Coast of Coconut Shells from Côte d’ivoire. Innovative Space of Scientific Research Journals, 13, 530-541.
[41]  Canizares, P., Carmona, M., Baraza, O. and Delgado, A. (2006) Adsorption Equilibrium of Phenol onto Chemically Modified Activated Carbon F400. Journal of Hazardous Materials, 131, 243-248.
https://doi.org/10.1016/j.jhazmat.2005.09.037
[42]  Khelifi, A., Temdrara, L. and Addoun, A. (2009) Effet de la texture poreuse et de la structure chimique sur l’adsorption du bleu de méthylène par des charbons actifs oxydés. Journal de Société Algérienne de Chimie, 19, 13-25.
[43]  Daoud, M. and Benturki, O., (2014) Activation d’un charbon à base de noyaux de jujubes et application à l’environnement. Adsorption d’un colorant de textile. Revue des Energies Renouvelables, 14, 155-162.
[44]  Khezami, L. and Capart, R. (2005) Removal of Chromium (VI) from Aqueous Solution by Activated Carbons: Kinetic and Equilibrium Studies. Journal of Hazardous Materials, 123, 223-231.
https://doi.org/10.1016/j.jhazmat.2005.04.012
[45]  Barrett, E.P., Joyner, L.G. and Halenda, P.P. (1951) The Determination of Pore Volume and Area Distributions in Porous Substances. I. Computations from Nitrogen Isotherms. Journal of the American Chemical Society, 73, 373-380.
https://doi.org/10.1021/ja01145a126
[46]  Atheba, P., Gbassi, G.K., Dongui, B., Bamba, D., Yolou, F.S. and Trokourey, A. (2014) études de la porosité, de la surface spécifique et des fonctions de surface de charbons actifs préparés après carbonisation artisanale des coques de noix de coc. Les technologies de laboratoire, 8, 126-136.
[47]  Nowicki, P., Pietrzak, R. and Wachowska, H. (2010) Sorption Properties of Active Carbons Obtained from Walnut Shells by Chemical and Physical Activation. Catalysis Today, 150, 107-114.
https://doi.org/10.1016/j.cattod.2009.11.009

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133