全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Birch Sap (Betula alba) and Chaga Mushroom (Inonotus obliquus) Extracts Show Anti-Oxidant, Anti-Inflammatory and DNA Protection/Repair Activity In Vitro

DOI: 10.4236/jcdsa.2019.92016, PP. 188-205

Keywords: Birch Sap, Chaga Mushroom, UV Irradiations, Oxidative Stress, Photo-Aging, Natural Compounds

Full-Text   Cite this paper   Add to My Lib

Abstract:

OBJECTIVE: The skin interacts strictly with the surrounding environment. Despite an efficient system of protection, its integrity is continuously assaulted by a massive group of external stresses. UV irradiations represent one of the most harmful factors for the cutaneous tissue. Both UV-A and UV-B can induce deep modifications of the different layers of the skin, including a weakening of its barrier function properties, DNA damages and degradation of the extracellular matrix. The aim of this project was to assess the UV protection activity of two natural compounds, the birch sap from Betula alba and organic extract from Inonotus obliquus (chaga mushroom) used separately or in a complex. METHODS: The anti-oxidant (ROS and MDA quantification, catalase and SOD activity measurement), anti-inflammatory (IL-1β, IL-6, IL-8, IL-10, TNF-α and INF-γ dosages) and the DNA protection/repair activities (DNA lesion site analysis) of birch sap and chaga mushroom extracts tested separately or in a complex containing organic birch sap 5% and Inonotus obliquus extracts 2% were evaluated in vitro after exposure of cultured keratinocytes and fibroblasts or reconstructed epidermis to UV-A/UV-B irradiations. RESULTS: We observed that birch sap from Betula alba and extracts from Inonotus obliquus prevent the formation of ROS and decrease the oxidative stress induced under UV irradiations, suggesting a strong anti-oxidant activity. In addition, the tested products showed an immunomodulatory effect by reducing the quantity of pro-inflammatory cytokines upon UV irradiations. UV-induced DNA damages of keratinocytes were also reduced by birch sap and chaga mushroom extracts. CONCLUSION: Here, for the first time, we have shown the photo-protection activity of extracts obtained from Betula alba and Inonotus obliquus mushroom on skin cells exposed to UV-A and UV-B irradiations. Due to their anti-oxidant, anti-inflammatory and DNA protection/repair activities, the tested products represent promising candidates in the development of cosmetic products with anti-photo-aging activity.

References

[1]  D’Orazio, J., Jarrett, S., Amaro-Ortiz, A. and Scott, T. (2103) UV Radiation and the Skin. International Journal of Molecular Sciences, 14, 12222-12248.
https://www.mdpi.com/1422-0067/14/6/12222
https://doi.org/10.3390/ijms140612222
[2]  Shibutani, S., Takeshita, M. and Grollman, A.P. (1991) Insertion of Specific Base during DNA Synthesis Past the Oxidation Damaged Base 8-Oxodg. Nature, 349, 431-434.
https://www.nature.com/articles/349431a0
https://doi.org/10.1038/349431a0
[3]  Pfeifer, G.P. (1997) Formation and Processing of UV Photoproducts: Effects of DNA Sequence and Chromatin Environment. Photochemistry and Photobiology, 65, 270-283.
https://doi.org/10.1111/j.1751-1097.1997.tb08560.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1751-1097.1997.tb08560.x
[4]  Thiele, J.J., Traber, M.G. and Packer, L. (1998) Depletion of Human Stratum Corneum Vitamin E: An Early and Sensitive in Vivo Marker of UV Induced Photo-Oxidation. Journal of Investigative Dermatology, 110, 756-761.
https://www.jidonline.org/article/S0022-202X(15)40076-4/fulltext
https://doi.org/10.1046/j.1523-1747.1998.00169.x
[5]  Ogura, R., Sugiyama, M., Nishi, J. and Haramaki, N. (1991) Mechanism of Lipid Radical For-mation Following Exposure of Epidermal Homogenate to Ultraviolet Light. Journal of Investigative Dermatology, 97, 1044-1047.
https://doi.org/10.1111/1523-1747.ep12492553
[6]  Wood, J.M. and Schallreuter, K.U. (2006) UVA-Irradiated Pheomelanin Alters the Structure of Catalase and Decreases Its Activity in Human Skin. Journal of Investigative Der-matology, 126, 13-14.
https://doi.org/10.1038/sj.jid.5700051
[7]  Meguro, S., Arai, Y., Masu-kawa, K., Uie, K. and Tokimitsu, I. (1999) Stratum Corneum Lipid. Abnormalities in UVB-Irradiated Skin. Photochemistry and Photobiology, 69, 317-321.
https://doi.org/10.1111/j.1751-1097.1999.tb03292.x
[8]  Biniek, K., Levi, K. and Dauskardt, R.H. (2006) Solar UV Radiation Reduces the Barrier Function of Human Skin. Proceedings of the National Academy of Sciences of the United States of America, 109, 17111-17116.
https://www.pnas.org/content/109/42/17111
https://doi.org/10.1073/pnas.1206851109
[9]  Hasegawa, T., Kaneko, F. and Niwa, Y. (1992) Changes in Lipid Peroxide Levels and Activity of Reactive Oxygen Scavenging Enzymes in Skin, Serum and Liver Following UVB Irradiation in Mice. Life Sciences, 50, 1893-1903.
https://doi.org/10.1016/0024-3205(92)90550-9
[10]  Zheng, Y., Xu, Q., Chen, H., Chen, Q., Gong, Z. and Lai, W. (2017) Transcriptome Analysis of Ultraviolet A-Induced Photoaging Cells with Deep Sequencing. The Journal of Dermatology, 45, 175-181.
https://doi.org/10.1111/1346-8138.14157
https://onlinelibrary.wiley.com/doi/pdf/10.1111/1346-8138.14157
[11]  Zheng, Y., Lai, W., Wan, M. and Maibach, H.I. (2011) Expression of Cathepsins in Human Skin Photoaging. Skin Pharmacology and Physiology, 24, 10-21.
https://doi.org/10.1159/000314725
[12]  Fisher, G.J. (2005) The Path-ophysiology of Photoaging of the Skin. Cutis, 75, 5-9.
https://europepmc.org/abstract/med/15773537
[13]  Li, D., Turi, T.G., Schuck, A., Freedberg, I.M., Khitrov, G. and Blumenberg, M. (2001) Rays and Arrays: The Transcriptional Program in the Response of Human Epidermal Keratinocytes to UVB Illumination. The FASEB Journal, 15, 2533-2550.
https://doi.org/10.1096/fj.01-0172fje
[14]  Clydesdale, G.J., Dandie, G.W. and Muller, H.K. (2001) Ultraviolet Light Induced Injury: Immunological and In-flammatory Effects. Immunology & Cell Biology, 79, 547-568.
https://doi.org/10.1046/j.1440-1711.2001.01047.x
[15]  Cui, Y., Kim, D.S. and Park, K.C. (2005) Antioxidanteffect of Inonotus obliquus. Journal of Ethnopharmacology, 96, 79-85.
https://doi.org/10.1016/j.jep.2004.08.037
[16]  Shibnev, V.A., Mishin, D.V., Garaev, T.M., Finogenova, N.P., Botikov, A.G. and Deryabin, P.G. (2011) Antiviral Activity of Inonotus obliquus Fungus Extract towards Infection Caused by Hepatitis C Virus in Cell Cultures. Bulletin of Experimental Biology and Medicine, 151, 612-614.
https://link.springer.com/article/10.1007%2Fs10517-011-1395-8?LI=true
https://doi.org/10.1007/s10517-011-1395-8
[17]  Géry, A., Dubreule, C., André, V., Rioult, J.P., Bouchart, V., Heutte, N., Eldin de Pécoulas, P., Krivomaz, T. and Garon, D. (2018) Chaga (Inonotus obliquus), a Future Potential Medicinal Fungus in Oncology? A Chemical Study and a Comparison of the Cytotoxicity against Human Lung Adenocarcinoma Cells (a549) and Human Bronchial Epithelial Cells (BEAS-2B). Integrative Cancer Therapies, 17, 832-843.
https://doi.org/10.1177/1534735418757912
[18]  Yun, J.S., Pahk, J.W., Lee, J.S., Shin, W.C., Lee, S.Y. and Hong, E.K. (2011) Inonotus obliquus Protects against Oxidative Stress-Induced Apoptosis and Premature Senescence. Molecules and Cells, 31, 423-429.
https://doi.org/10.1007/s10059-011-0256-7
[19]  Lee, E.J. and Cha, H.J. (2019) Inonotus obliquus Extract as an Inhibitor of α-MSH-Induced Melanogenesis in B16F10 Mouse Melanoma Cells. Cosmetics, 6, 9.
https://doi.org/10.3390/cosmetics6010009
[20]  Rastogi, S., Pandey, M.M. and Kumar Singh Rawat, A. (2015) Medicinal Plants of the Genus Betu-la—Traditional Uses and a Phytochemical-Pharmacological Review. Journal of Ethnopharmacology, 159, 62-83.
https://doi.org/10.1016/j.jep.2014.11.010
[21]  Svanberg, I., Sõukand, R., Łuczaj, Ł., Kalle, R., Zyryanova, O., Dénes, A., Papp, N., Nedelcheva, A., Šeškauskait ė, D., Kołodziejska-Degórska, I. and Kolosova, V. (2012) Uses of Tree Saps in Northern and Eastern Parts of Europe. Acta Societatis Botanicorum Poloniae, 81, 343-357.
https://doi.org/10.5586/asbp.2012.036
[22]  Saewan, N. and Jimtaisong, A. (2015) Natural Products as Photoprotection. Journal of Cosmetic Dermatology, 14, 47-63.
https://doi.org/10.1111/jocd.12123
[23]  Krutmann, J., Bouloc, A., Sore, G., Bernard, B.A. and Passeron, T. (2017) The Skin Aging Exposome. Journal of Dermatological Science, 85, 1527-1561.
https://doi.org/10.1016/j.jdermsci.2016.09.015
[24]  de Jager, T.L., Cockrell, A.E. and Du Plessis, S.S. (2017) Ultraviolet Light Induced Generation of Reactive Oxygen Species. Advances in Experimental Medicine and Biology, 996, 15-23.
https://doi.org/10.1007/978-3-319-56017-5_2
[25]  Williams, J.D., Bermudez, Y., Park, S.L., Stratton, S.P., Uchida, K., Hurst, C.A. and Wondrak, G.T. (2014) Malondialdehyde-Derived Epitopes in Human Skin Result from Acute Exposure to Solar UV and Occur in Nonmelanoma Skin Cancer Tissue. Journal of Photochemistry and Photobiology B: Biology, 132, 56-65.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3973651
https://doi.org/10.1016/j.jphotobiol.2014.01.019
[26]  Sander, C.S., Chang, H., Salzmann, S., Muller, C.S., Ekanayake-Mudiyanselage, S., Elsner, P. and Thiele, J.J. (2002) Photoaging Is Associated with Protein Oxidation in Human Skin in Vivo. Journal of Investigative Dermatology, 118, 618-625.
https://doi.org/10.1046/j.1523-1747.2002.01708.x
[27]  Grabek-Lejko, D., Kasprzyk, I., Zaguła, G. and Puchalski, C. (2017) The Bioactive and Mineral Compounds in Birch Sap Collected in Different Types of Habitats. Baltic Forestry, 23, 230-239.
https://www.balticforestry.mi.lt/bf/PDF_Articles/2017-23[2]/Baltic%20Forestry%202017.2_394-401.pdf
[28]  Powell, S.R. (2000) The Antioxidant Properties of Zinc. The Journal of Nutrition, 130, 1447S-1454S.
https://doi.org/10.1093/jn/130.5.1447S
[29]  Itoh, S., Ozumi, K., Kim, H.W., Nakagawa, O., McKinney, R.D., Folz, R.J., Zelko, I.N., Ushio-Fukai, M. and Fukai, T. (2009) Novel Mechanism for Regulation of Extracellular SOD Transcription and Activity by Copper: Role of Antioxidant-1. Free Radical Biology & Medicine, 46, 95-104.
https://www.sciencedirect.com/science/article/pii/S0891584908005789?via%3Dihub
https://doi.org/10.1016/j.freeradbiomed.2008.09.039
[30]  Lee, I.K., Kim, Y.S., Jang, Y.W., Jung, J.Y. and Yun, B.S. (2007) New Antioxidant Polyphenols from the Medicinal Mushroom Inonotus obliquus. Bioorganic & Medicinal Chemistry Letters, 17, 6678-6681.
https://doi.org/10.1016/j.bmcl.2007.10.072
[31]  Yarosh, D.B. (2016) DNA Damage and Repair in Skin Aging. In: Farage, M., Miller, K. and Maibach, H., Eds., Textbook of Aging Skin, Springer, Berlin, Heidelberg, 1-13.
https://doi.org/10.1007/978-3-642-27814-3_31-3
[32]  Parat, M.O., Richard, M.J., Pollet, S., Hadjur, C., Favier, A. and Béani, J.C. (1997) Zinc and DNA Fragmentation in Keratinocyte Apoptosis: Its Inhibitory Effect in UVB Irradiated Cells. Journal of Photochemistry and Photobiology B: Biology, 37, 101-106.
https://doi.org/10.1016/S1011-1344(96)07334-4
[33]  Leccia, M.T., Richard, M.J., Favier, A. and Béani, J.C. (1997) Zinc Protects against Ultraviolet A1-Induced DNA Damage and Apoptosis in Cultured Human Fibroblasts. Biological Trace Element Research, 69, 177-190.
https://link.springer.com/article/10.1007/BF02783870
https://doi.org/10.1007/BF02783870
[34]  Nichols, J.A. and Katiyar, S.K. (2010) Skin Photoprotection by Natural Polyphenols: Anti-Inflammatory, Antioxidant and DNA Repair Mechanisms. Archives of Dermatological Research, 302, 71-83.
https://doi.org/10.1007/s00403-009-1001-3
https://link.springer.com/article/10.1007%2Fs00403-009-1001-3
[35]  Meeran, S.M., Mantena, S.K., Elmets, C.A. and Katiyar, S.K. (2006) (-)-Epigallocatechin-3-Gallate Prevents Photocarcinogenesis in Mice through In-terleukin-12-Dependent DNA Repair. Cancer Research, 66, 5512-5520.
http://cancerres.aacrjournals.org/content/66/10/5512.long
https://doi.org/10.1158/0008-5472.CAN-06-0218
[36]  Katiyar, S.K., Vaid, M., van Steeg, H. and Meeran, S.M. (2010) Green Tea Polyphenols Prevent UV-Induced Immunosuppression by Rapid Repair of DNA Damage and Enhancement of Nucleotide Excision Repair Genes. Cancer Prevention Research, 3, 179-189.
https://doi.org/10.1158/1940-6207.CAPR-09-0044
http://cancerpreventionresearch.aacrjournals.org/content/3/2/179
[37]  Kondo, S. (1999) The Roles of Keratinocyte-Derived Cytokines in the Epidermis and Their Possible Responses to UVA-Irradiation. Journal of Investigative Der-matology Symposium Proceedings, 4, 177-183.
https://doi.org/10.1038/sj.jidsp.5640205
https://www.jidsponline.org/article/S1087-0024(15)30258-6/pdf
[38]  Iyer, S.S. and Cheng, G. (2012) Role of Interleukin 10 Transcriptional Regulation in Inflammation and Autoimmune Disease. Critical Reviews in Immunology, 32, 23-63.
https://doi.org/10.1615/CritRevImmunol.v32.i1.30
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3410706/pdf/nihms377104.pdf
[39]  Rittié, L. and Fisher, G.J. (2002) UV-Light-Induced Signal Cascades and Skin Aging. Ageing Research Reviews, 1, 705-720.
https://www.sciencedirect.com/science/article/pii/S1568163702000247?via%3Dihub
https://doi.org/10.1016/S1568-1637(02)00024-7
[40]  Flekhter, O.B., Medvedeva, N.I., Karachurina, L.T., Baltina, L.A., Galin, F.Z., Zarudii, F.S. and Tolstikov, G.A. (2005) Synthesis and Pharmacological Activity of Betulin, Betulinic Acid, and Allobetulin Esters. Pharmaceutical Chemistry Journal, 39, 401-404.
https://link.springer.com/article/10.1007/s11094-005-0167-z
https://doi.org/10.1007/s11094-005-0167-z
[41]  Park, Y.M., Won, J.H., Kim, Y.H., Choi, J.W., Park, H.J. and Lee, K.T. (2005) In Vivo and in Vitro Anti-Inflammatory and Anti-Nociceptive Effects of the Methanol Extract of Inonotus obliquus. Journal of Ethnopharmacology, 101, 120-128.
https://doi.org/10.1016/j.jep.2005.04.003
[42]  Ma, L., Chen, H., Dong, P. and Lu, X. (2013) Anti-Inflammatory and Anticancer Activities of Extracts and Compounds from the Mushroom Inonotus obliquus. Food Chemistry, 139, 503-508.
https://doi.org/10.1016/j.foodchem.2013.01.030
https://www.sciencedirect.com/science/article/pii/S0308814613000526?via%3Dihub

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133