全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Petrography, Geochemistry and Petrogensis of Pleistocene Basaltic Flow from Northwest Atarous Area, Central Jordan

DOI: 10.4236/ijg.2019.106035, PP. 613-631

Keywords: Petrography, Geochemistry, Petrogensis, Pleistocene Basaltic, Atarous Basalt, Jordan

Full-Text   Cite this paper   Add to My Lib

Abstract:

Fifteen basaltic rock samples were collected from central Jordan at the Atarous volcanism basaltic flow area. The samples cover about 8 km2 from the Atarous Basalt flow (AB). The AB flow was introduced in the Miocene to Pleistocene periods. The samples analyze major and trace elements by using XRF. Petrography, Geochemistry and Petrogensis have investigation to carried out for the AB. The petrography analyses of the AB rocks show they are composed of plagioclase (labradorite and bytownite), pyroxene (augite), and olivine (forsterite); accessory minerals include apatite and secondary minerals magnetite, ilmenite, spinel and iddingsite. The AB is classified within alkaline to sub-alkaline and tholeiitic to Calc-Alkaline basalt. The Mg# range between 0.39 and 0.49 of basalt samples exhibits different degrees of fractionation with a low degree of melting < 15% as indicated from the varying concentration of incompatible trace elements Ba, Rb, Sr. Trace elements of primary magna show low variable abundances of compatible and incompatible elements, which reflecs a homogenous source. Geochemical parameters such as Mg# and high Ti contents indicate that the corresponding magmas are of primary origin. The tectonic setting of AB is explained by using discrimination diagrams, Ti-Zr-Sr and Nb-Zr-Y and Ti-Zr-Y, the AB plotted within the plate basalt, alkali basalt and Calk alkaline basalt field, respectively. The spider diagram shows the samples AB enrichment of the Ba, K, Nb and Ce, depletion of Nb and Y. The AB exhibited positive Nb, Ce and Ti anomalies, and negative anomalies of Ba, Sr, and P. It is attributed to the fractionation of feldspar for Ba and Sr and apatite for P depletion. The spider diagram showed a positive Nb peak, which conforms to the tertiary and to recent continental alkali basalt provinces and indicates that the AB is the product of lithosphere from upwelling asthenosphere mantle.

References

[1]  Barberi, F., Capaldi, P., Gasperihi, G., Marinelli, G., Santacroce, R., Treuil, M. and Varet, J. (1979) Recent Basaltic Volcanism of Jordan and Its Implication on the Geodynamic History of the Dead Sea Shear Zone. In: International Symposium Geodynamic Evolution of the Afro-Arabian Rift System, Academia Nazionale Dei Lincei 47, Rome, 667-683.
[2]  Shaw, J.E., Baker, J.A., Menzies, M.A., Thirl wall, M.F. and Ibrahim, K.M. (2003) Petrogensis of the Largest Intraplate Volcanic Field on the Arabian Plate (Jordan): A Mixed Lithosphere-Asthenosphere Source Activated by Lithospheric Extension. Journal of Petrology, 44, 1657-1679.
https://doi.org/10.1093/petrology/egg052
[3]  Ibrahim, K. and Al-Malabeh, A. (2006) Geochemistry and Volcanic Features of Harrat El-Fahda, a Young Volcanic Field in Northwest Arabia, Jordan. Journal of Asian Sciences, 127, 127-154.
https://doi.org/10.1016/j.jseaes.2005.01.009
[4]  Moffat, D. (1988) A Volcano Tectonic Analysis of the Cenozoic Continental Basalts of Northern Jordan: Implications for Hydrocarbon Prospectively in the Block B Area. Unpublished Report, University College of Swansea, Swansea.
[5]  Bender, F. (1974) Geology of the Arabian Peninsula, Jordan. US Geological Survey Professional Paper, 36, 560-561.
https://doi.org/10.3133/ofr74215
[6]  Fediuk, F. and Al-Fugha, H. (1999) Dead Sea Region Fault—Controlled Chemistry of Cenozoic Volcanics. Geolines (Praha), 9, 29-34.
[7]  Wilson, M. (1989) Igneous Petrogenesis, a Global Tectonic Approach. 2nd Edition, Unwin Hyman, London, 466 p.
https://doi.org/10.1007/978-1-4020-6788-4
[8]  Shaw, J. (2003) Geochemistry of Cenozoic Volcanism and Arabian Lithospheric Mantle in Jordan. PhD Thesis, Royal Holloway University of London, London, 268 p.
[9]  Duffield, W., Mckee, E., El-Salem, F. and Feimeh, M. (1988) K-Ar Ages Chemical Composition and Geothermal Significance of Cenozoic Basalt near the Jordan Rift. Geothermics, 17, 635-644.
https://doi.org/10.1016/0375-6505(88)90048-X
[10]  Tarawneh, K., Ilani, S., Rabba, I., Harlavan, Y., Peltz, S., Ibrahim, K., Weinberger, R. and Steinitz, G. (2000) K-Ar Dating of the Harrat Ash Shaam Basalts, Northeast Jordan. Natural Resources Authority and Geological Survey of Israel, Report GSI 2/2000, 45 p.
[11]  Ilani, S., Harlavan, Y., Tarawneh, K., Rabba, I., Weinberger, R., Ibrahim, K., Peltz, S. and Steinitz, G. (2001) New K-Ar Ages of Basalts from the Harrat Asham Volcanic Field in Jordan: Implications for the Span and Duration of Upper Mantle Upwelling beneath the Western Arabian Plate. Geology, 29, 171-174.
https://doi.org/10.1130/0091-7613(2001)029<0171:NKAAOB>2.0.CO;2
[12]  Steinitz, G. and Bartov, Y. (1992) The Miocene-Pleistocene History of the Dead Sea Segment of the Rift in Light of K-Ar Ages of Basalts. Israel Journal of Earth Sciences, 40, 199-208.
[13]  Al-Fugha, H. (1996) Basanites with Mantle Xenoliths from Jabal El-Dabusa in West Central Jordan. Mutah Journal, 11, 35-53.
[14]  White, R.S. and McKenzie, D. (1989) Magmatism at Rift Zones the Generation of Volcanic Continental Margins and Flood Basalts. Journal of Geophysical Research, 94, 7685-7730.
https://doi.org/10.1029/JB094iB06p07685
[15]  McGuire, A.V. and Bohannon, R.G. (1989) Timing of Mantle Upwelling: Evidence for a Passive Origin of the Red Sea Rift. Journal of Geophysical Research B, 94, 1677-1682. https://doi.org/10.1029/JB094iB02p01677
[16]  Garfunkel, Z. (1989) Tectonic Setting of Phanerozoic Magmatism in Israel. Israel Journal of Earth Sciences, 38, 51-74.
[17]  Weinstein, Y., Navon, O., Altherr, R. and Stein, M. (2006) The Role of Lithospheric Mantle Heterogenity in the Generation of Plio-Pleistocene Alkali Basaltic Suites from NW Harrat Ash Shaam. Journal of Petrology, 47, 1017-1050.
https://doi.org/10.1093/petrology/egl003
[18]  Al-Fugha, H. (1995) Spinel-Lherzolite Xenoliths from Jabal Al-Qiranah Basalt Central Jordan. Mutah Journal, 10, 1-14.
[19]  Al-Fugha, H. (2006) Petrology and Geochemistry of Upper Mantle Xenoliths from Tel-Remah Volcano. NE Jordan Mu’tah Journal, 21, 17-30.
[20]  Al-Fugha, H. and Al-Amaireh, M. (2007) Petrology and Origin of Ultramafic Xenoliths from Northeastern Jordan Volcanoes. American Journal of Applied Sciences, 4, 491-495.
https://doi.org/10.3844/ajassp.2007.491.495
[21]  Yazdi, A., Ashja-Ardalan, A., Emami, M., Dabiri, R. and Foudazi, M. (2017) Chemistry of Minerals and Geo Thermobarometry of Volcanic Rocks in the Region Located in Southeast of Bam Kerman Province. Open Journal of Geology, 7, 1644-1653.
https://doi.org/10.4236/ojg.2017.711110
[22]  Morimoto, N. (1988) Nomenclature of Pyroxenes. Mineralogical Magazine, 52, 535-550.
https://doi.org/10.1180/minmag.1988.052.367.15
[23]  El-Hasan, T. and Al-Malabeh, A. (2008) Geochemistry, Mineralogy and Petrogenesis of El-Lajjoun Pleistocene Alkali Basalt of Central Jordan. Jordan Journal of Earth and Environmental Sciences, 1, 53-62.
[24]  Le Maitre, R.W., Bateman, P., Dudek, A., Keller, J., Lameyre Le Bas, M.J., Sabine, P.A., Schmid, R., Sorensen, H., Streckeisen, A., Woolley, A.R. and Zanettin, B. (1989) A Classification of Igneous Rocks and Glossary of Terms. Blackwell, Oxford.
[25]  Cox, K., Bell, J. and Pankhurst, R. (1979) The Interpretation of Igneous Rocks. Springer, London.
https://doi.org/10.1007/978-94-017-3373-1
[26]  Irvin, T.N. and Baragar, W.R. (1971) A Guide to the Chemical Classification of the Volcanic Rocks. Canadian Journal of Earth Sciences, 8, 523-548.
https://doi.org/10.1139/e71-055
[27]  Winchester, J.A. and Floyd, P.A. (1977) Geochemical Discrimination of Different Magma Series and Their Differentiation Products Using Immobile Elements. Chemical Geology, 20, 325-343.
https://doi.org/10.1016/0009-2541(77)90057-2
[28]  Downes, H., Seghed, I., Szakacs, A., Dobasi, G., James, D., Vaselli, O., Rigby, I., Ingram, G., Rex, D. and Peckskay, Z. (1995) Petrology and Geochemistry of Late Tertiary-Quaternary Mafic Alkali Volcanism in Romania. Lithos, 35, 65-81.
https://doi.org/10.1016/0024-4937(95)91152-Y
[29]  Ma, G.S.-K., Malpas, J., Xenophontos, C. and Chan, G.H.-N. (2011) Petrogenesis of Latest Miocene-Quaternary Continental Intraplate Volcanism along the Northern Dead Sea Fault System (Al-Ghab-Homs Volcanic Field), Western Syria: Evidence for Lithosphere-Asthenosphere Interaction. Journal of Petrology, 52, 401-430.
https://doi.org/10.1093/petrology/egq085
[30]  Middlemost, E.A.K. (1975) The Basalt Clan. Earth Science Reviews, 11, 337-364.
https://doi.org/10.1016/0012-8252(75)90039-2
[31]  Winter, J.D. (2001) An Introduction to Igneous and Metamorphic Petrology. Prentice Hall Inc., Upper Saddle River, 697.
[32]  Bany Yaseen, I. (2014) Contribution to the Petrography, Geochemistry, and Petrogensis of Zarqa-Ma’in Pleistocene Alkali Olivine Basalt Flow of Central Jordan. International Journal of Geosciences, 5, 657-672.
https://doi.org/10.4236/ijg.2014.56059
[33]  Alnawafleh, H., Tarawneh, K., Ibrahim, K., Zghoul, K., Titi, A., Rawashdeh, R., Moumani, K. and Masri, A. (2015) Characterization and Origin of the Miocene Mudawwara-Quwayra Basaltic Dike, Southern Jordan. International Journal of Geosciences, 6, 869-881.
https://doi.org/10.4236/ijg.2015.68071
[34]  Bany Yaseen, I. (2016) Petrography, Geochemistry and Petrogensis of Basalte Flow frome Ar-Rabba Area, Central Jordan. International Journal of Géosciences, 7, 378-396. https://doi.org/10.4236/ijg.2016.73030
[35]  Pearce, J., Harris, N. and Tindle, A. (1984) Trace Element Discrimination Diagram for the Tectonic Interpretation of Granitic Rocks. Journal of Petrology, 25, 956-983.
https://doi.org/10.1093/petrology/25.4.956
[36]  Pearce, J.A. and Cann, J.R. (1973) Tectonic Setting of Basic Volcanic Rocks Determined Using Trace Element Analyses. Earth and Planetary Science Letters, 19, 290-300.
https://doi.org/10.1016/0012-821X(73)90129-5
[37]  Meschede, M. (1986) A Method of Discriminating between Different Types of Mid-Ocean Ridge Basalts and Continental Tholeiitic with the Nb-Zr-Y Diagram. Chemical Geology, 56, 207-218.
https://doi.org/10.1016/0009-2541(86)90004-5
[38]  Pearce T.H., Gorman, B.E. and Birkett, T.C. (1977) The Relationship between Major Element Chemistry and Tectonic Environment of Basic and Intermediate Volcanic Rocks. Earth and Planetary Science Letters, 36, 121-132.
https://doi.org/10.1016/0012-821X(77)90193-5
[39]  Peltz, S. and Bratosia, W. (1986) New Data on the Geochemistry of the Quaternary Basalts in Pensani Mountains. Geophics, 71, 389-403.
[40]  Jenner, G., Gawood, P., Rautenschlein, M. and White, W. (1987) Composition of Back-Arc Basin Volcanic Valufa Ridge Lau Basin: Evidence for a Slab-Derived Component in Their Mantle Source. Journal of Volcanology and Geothermal Research, 32, 209-222.
https://doi.org/10.1016/0377-0273(87)90045-X
[41]  Moghazi, A.M. (2003) Geochemistry and Petrogenesis of a High-K Calc-Alkaline Dokhan Volcanic Suite, South Safaga Area, Egypt: The Role of Late Neoproterozoic Crustal Extension. Precambrian Research, 125, 161-178.
https://doi.org/10.1016/S0301-9268(03)00110-4
[42]  Sun, S.S. and Mac Donough, W.F. (1989) Chemical and Isotopic Systematic of Oceanic Basalts Implications for Mantle Composition and Processes in Magmatism in the Ocean Basins. Geological Society, London, Special Publication, 42, 313-345.
https://doi.org/10.1144/GSL.SP.1989.042.01.19
[43]  El-Akhal, H. (2004) Contribution to the Petrography, Geochemistry and Tectonic Setting of the Basalt Flows of the Umm-Qais Plateau, North Jordan. Geological Bulletin of Turkey, 47, 1-10.
[44]  Al-Malabeh, A. (2009) Cryptic Mantle Metasomatism: Evidences from Spinel Lherzolite Xenoliths/Al-Harida Volcano in Harrat Al-Shaam, Jordan. American Journal of Applied Sciences, 6, 2085-2092.
https://doi.org/10.3844/ajassp.2009.2085.2092
[45]  Thompson, R.N. (1987) Phase-Equilibria Constraints on the Genesis and Magmatic Evolution of Oceanic Basalts. Earth-Science Reviews, 24, 161-210.
https://doi.org/10.1016/0012-8252(87)90023-7
[46]  Nasir, S. (1994) Geochemistry and Petrogenesis of Cenozoic Volcanic Rocks from the Northwestern Part of the Arabian Continental Alkali Basalt Province, Jordan. Africa Geoscience Review, 1, 455-467.
[47]  Nasir, S. (1995) Mafic Lower Crustal Xenoliths from the Northwestern Part of the Arabian Plate. European Journal of Mineralogy, 7, 217-230.
https://doi.org/10.1127/ejm/7/1/0217
[48]  Shaw, J.E., Baker, J.A., Kent, A.R., Ibrahim, K.M. and Menzies, M.A. (2007) The Geochemistry of the Arabian. Lithospheric Mantle a Source for Intraplate Volcanism. Journal of Petrology, 48, 1495-1512.
https://doi.org/10.1093/petrology/egm027
[49]  Mysen, B.O. and Kushiro, R. (1977) Compositional Variation of Coexisting Phases with Degrees of Melting of Peridotite in the Upper Mantle. American Mineralogist, 62, 843-865.
[50]  Shervais, J.W. and Vetter, S.K. (2009) High-K Alkali Basalts of the Western Snake River Plain: Abrupt Transition from Tholeitic to Mildly Alkaline Plume-Derived Basalts. Journal of Volcanolgy and Geothermal Research, 188, 141-152.
https://doi.org/10.1016/j.jvolgeores.2009.01.023
[51]  Green, D.H. (1970) A Review of Experimental Evidence on the Origin of Basaltic and Nephelinitic Magmas. Physics of the Earth and Planetary Interiors, 3, 221.
https://doi.org/10.1016/0031-9201(70)90060-9
[52]  Rooney, T.O., Furma, T., Yirgu, G. and Ayalew, D. (2005) Structure of Ethiopian Lithophere: Xenolith Evidence in the Main Ethiopian Rift. Geochimica et Cosmochimica Acta, 69, 3889-3910.
https://doi.org/10.1016/j.gca.2005.03.043
[53]  Thompson, R.N., Gibson, L., Mariner, G.J., Nattey, D.P. and Morrison M.A.J. (1980) Primary Basalt, Magma Genesis. Central France Petrl., 21, 265-293.
[54]  Shehata, A. and Theodoros, N. (2011) Alkali Basalts from Burgenland, Austria Petrological Constraints on the Origin of the Westernmost Magmatism in the Carpathian-Pannonian Region. Lithos, 121, 176-188.
https://doi.org/10.1016/j.lithos.2010.11.001
[55]  Sawaf, T., Al-Saad, D., Gebran, A., Barazangi, M., Best, A. and Chiamov, T. (1993) Stratigraphy and Structure of Eastern Syria across the Euphrates Depression. Tectonophysics, 230, 267-281.
https://doi.org/10.1016/0040-1951(93)90235-C
[56]  Al-Safarjalani, A., Nasir, S., Fockenberg, T. and Massonne, H.-J. (2009) Chemical Composition of an Intermediate Part of the Lower Crust beneath South Western Syria. Chemie der Erde—Geochemistry, 69, 359-375.
https://doi.org/10.1016/j.chemer.2009.05.005

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133