全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Affective Behavior Dysregulation Was Induced by Chronic Administration of Copper in Wistar Rats

DOI: 10.4236/nm.2019.102009, PP. 134-149

Keywords: Copper, Depression-Like, Anxiety-Like, Rat

Full-Text   Cite this paper   Add to My Lib

Abstract:

As both deficiency and excess of copper (Cu) can be harmful, dysregulation in its homeostasis has been connected with various neurological disorders. The present study was undertaken to examine whether Cu chronic administration can induce alterations of affective behavior especially anxiety and depression levels in male and female rats. Twenty-four rats, for each gender, divided in control and three test groups (n = 6), were injected intraperitoneally with saline (0.9% NaCl) or CuCl2 (0.25 mg/kg, 0.5 mg/kg and 1 mg/kg) for 8 weeks. After treatment period, animals were tested in the open-field, elevated plus maze tests for anxiety-like behavior, and forced swimming test for depression-like behavior. Results demonstrated that Cu administered chronically, exerts an anxiogenic effect in rats. In the OFT, Cu decreases the TCA and NRC parameters without modifying the locomotor activity represented by the NTS parameter. With regard to EPM, Cu decreases TOA and EOA parameters without modifying the TAE parameter. A significant increase in depression-like symptoms was also exhibited by Cu treated rats (p < 0.001). A dose of 1 mg/kg CuCl2 showed maximum anxiety-like and depression-like symptoms as compared to controls as well as from the other two doses indicating dose-dependent effects of chronic Cu administration. Overall, these results suggest that intoxication with Cu has potentially deleterious effects on brain as reflected in behavioral dysfunctions such as depression and anxiety.

References

[1]  Kiernan, J., Etherton, R. and Zavos, P. (2017) Women with Anxiety and Depression: Out of the Darkness and into the Light. MOJ Women’s Health, 4 167-170.
https://doi.org/10.15406/mojwh.2017.04.00107
[2]  Murray, C.J.L. and Lopez, A.D. (1997) Global Mortality, Disability, and the Contribution of Risk Factors: Global Burden of Disease Study. The Lancet, 349, 1436-1442.
https://doi.org/10.1016/S0140-6736(96)07495-8
[3]  Ma, B., et al. (2006) Functional Disability of Mental Disorders and Comparison with Physical Disorders: A Study among the General Population of Six European Countries. Acta Psychiatrica Scandinavica, 113, 492-500.
https://doi.org/10.1111/j.1600-0447.2005.00684.x
[4]  Tiller, J.W. (2012) Depression and Anxiety. The Medical Journal of Australia, 199, S28-S31.
https://doi.org/10.5694/mjao12.10628
[5]  Gorman, J.M. (1997) Comorbid Depression and Anxiety Spectrum Disorders Depress. Anxiety, 168, 160-168.
https://doi.org/10.1002/(SICI)1520-6394(1996)4:4<160::AID-DA2>3.0.CO;2-J
[6]  Yegambaram, M., Manivannan, B., Beach, T.G. and Halden, R.U. (2015) Role of Environmental Contaminants in the Etiology of Alzheimer’s Disease: A Review. Current Alzheimer Research, 12, 116-146.
https://doi.org/10.2174/1567205012666150204121719
[7]  Zghari, O., Rezqaoui, A., Ouakki, S., Lamtai, M., Chaibat, J., Mesfioui, A., EL hessni, A., Rifi, E., Essamri, A. and Ouichou, A. (2018) Effect of Chronic Aluminum Administration on Affective and Cognitive Behavior in Male and Female Rats. Journal of Behavioral and Brain Science, 8, 179-196.
https://doi.org/10.4236/jbbs.2018.84012
[8]  Lamtai, M., Chaibat, J., Ouakki, S., Berkiks, I., Rifi, E., El hessni, A., Mesfioui, A., Hbibi, A., Ahyayauch, H., Essamri, A. and Ouichou, A. (2018) Effect of Chronic Administration of Cadmium on Anxiety-Like, Depression-Like and Memory Deficits in Male and Female Rats: Possible Involvement of Oxidative Stress Mechanism. Journal of Behavioral and Brain Science, 8, 240-268.
https://doi.org/10.3390/brainsci8080141
[9]  Abbaoui, A., El, O. and Gamrani, H. (2017) Neuroprotective Potential of Aloe Arborescens against Copper Induced Neurobehavioral Features of Parkinson’s Disease in Rat. Acta Histochemica, 119, 592-601.
https://doi.org/10.1016/j.acthis.2017.06.003
[10]  Lamtai, M., Chaibat, J., Ouakki, S., Zghari, O., Mesfioui, A., El hessni, A., Marmouzi, I., Essamri, A. and Ouichou, A. (2018) Effect of Chronic Administration of Nickel on Affective and Cognitive Behavior in Male and Female Rats: Possible Implication of Oxidative. Brain Sciences, 8, 141.
https://doi.org/10.3390/brainsci8080141
[11]  Kicinski, M., Vrijens, J., Vermier, G., Den Hond, E., Schoeters, G., Nelen, V., Bruckers, L., Sioen, I., Baeyens, W., Van Larebeke, N., Viaene, M.K. and Nawrot, T.S. (2015) Function and Low-Level Metal Exposure in Adolescents. International Journal of Hygiene and Environmental Health, 218, 139-146.
https://doi.org/10.1016/j.ijheh.2014.09.002
[12]  Mitra, S., Keswani, T., Dey, M., Bhattacharya, S., Sarkar, S., Goswami, S., Ghosh, N., Dutta, A. and Bhattacharyya, A. (2012) Copper-Induced Immunotoxicity Involves Cell Cycle Arrest and Cell Death in the Spleen and Thymus. Toxicology, 293, 78-88.
https://doi.org/10.1016/j.tox.2011.12.013
[13]  Abdellatif, A., Omar, E.L.H. and Halima, G. (2016) The Neuronal Basis of Copper Induced Modulation of Anxiety State in Rat. Acta Histochemica, 119, 10-17.
[14]  Katarzyna, Q., Gaweł, M., Doboszewska, U., Starowicz, G., Pytka, K., Linzi, C. and Budziszewska, B. (2014) Essential Elements in Depression and Anxiety. Part II. Pharmacological Reports, 67, 187-194.
[15]  Maes, M., Vandoolaeghe, E., Neels, H., Demedts, P., Wauters, A., Meltzer, H.Y., Altamura, C. and Desnyder, R. (1997) Lower Serum Zinc in Major Depression Is a Sensitive Marker of Treatment Resistance and of the Immune/Inflammatory Response in That Illness. Biological Psychiatry, 42, 349-358.
https://doi.org/10.1016/S0006-3223(96)00365-4
[16]  Schlegel-Zawadzka, M.N.G. (1999) Alterations in Serum and Brain Trace Element Levels after Antidepressant. Biological Trace Element Research, 73, 37-45.
https://doi.org/10.1385/BTER:73:1:37
[17]  Desai, V. and Kaler, S.G. (2018) Role of Copper in Human Neurological Disorders. American Journal of Clinical Nutrition, 88, 855-858.
https://doi.org/10.1093/ajcn/88.3.855S
[18]  Madsen, E. and Gitlin, J.D. (2007) Copper and Iron Disorders of the Brain. Annual Review of Neuroscience, 30, 317-339.
https://doi.org/10.1146/annurev.neuro.30.051606.094232
[19]  Scheiber, I.F., Mercer, J.F.B. and Dringen, R. (2014) Metabolism and Functions of Copper in Brain. Progress in Neurobiology, 116, 33-57.
https://doi.org/10.1016/j.pneurobio.2014.01.002
[20]  Salustri, C., Barbati, G., Ghidoni, R., Quintiliani, L., Ciappina, S., Binetti, G. and Squitti, R. (2010) Clinical Neurophysiology Is Cognitive Function Linked to Serum Free Copper Levels? A Cohort Study in a Normal Population. Clinical Neurophysiology, 121, 502-507.
https://doi.org/10.1016/j.clinph.2009.11.090
[21]  Brewer, G.J. (2013) The Risks of Copper Toxicity Contributing to Cognitive Decline in the Aging Population and to Alzheimer’s Disease. Journal of the American College of Nutrition, 28, 37-41.
[22]  Multhaup, G., Schlicksupp, A., Hesse, L., Beher, D., Ruppert, T., Masters, C.L. and Beyreuther, K. (1996) The Amyloid Precursor Protein of Alzheimer’s Disease in the Reduction of Copper (1) to Copper (1). Science, 271, 1406-1409.
[23]  Lutsenko, S., Hubbard, A.L. and Hubbard, A. (2010) Copper Handling Machinery of the Brain. Metallomics, 2. 596-608.
https://doi.org/10.1039/c0mt00006j
[24]  Pal, A., Badyal, R.K. and Vasishta, R.K. (2013) Biochemical, Histological, and Memory Impairment Effects of Chronic Copper Toxicity: A Model for Non-Wilsonian Brain Copper Toxicosis in Wistar Rat. Biological Trace Element Research, 153, 257-268.
https://doi.org/10.1007/s12011-013-9665-0
[25]  Wawer, A. and Cinnamon, L.E. (2013) Neurochemical and Behavioral Characteristics of Toxic Milk Mice: An Animal Model of Wilson’s Disease. Neurochemical Research, 38, 2037-2045.
https://doi.org/10.1007/s11064-013-1111-3
[26]  Leiva, J., Palestini, M., Infante, C., Goldschmidt, A. and Motles, E. (2009) Copper Suppresses Hippocampus LTP in the Rat, But Does Not Alter Learning or Memory in the Morris Water Maze. Brain Research, 1256, 69-75.
https://doi.org/10.1016/j.brainres.2008.12.041
[27]  Narang, R.L., Gupta, K.R. and Narang, A.P.S. (1991) Levels of Copper and Zinc in Depression. Indian Journal of Physiology and Pharmacology, 35, 272-274.
[28]  Islam, R., Ahmed, M.U. and Mitu, S.A. (2013) Comparative Analysis of Serum Zinc, Copper, Manganese, Iron, Calcium, and Magnesium Level and Complexity of Interelement Relations in Generalized Anxiety Disorder Patients. Biological Trace Element Research, 154, 21-27.
https://doi.org/10.1007/s12011-013-9723-7
[29]  Piotrowska, A., Siwek, A., Wolak, M., Pochwat, B., Szewczyk, B., Opoka, W., Poleszak, E. and Nowak, G. (2013) Involvement of the Monoaminergic System in the Antidepressant-Like. Journal of Physiology and Pharmacology, 64, 493-498.
[30]  Frederickson, C.J., Suh, S.W., Silva, D., Frederickson, C.J. and Thompson, R.B. (2000) Zinc and Health: Current Status and Future Directions Importance of Zinc in the Central Nervous System: The Zinc-Containing. The Journal of Nutrition, 130 1471-1483.
https://doi.org/10.1093/jn/130.5.1471S
[31]  Crayton, J.W. (2007) Elevated Serum Copper Levels in Women with a History of Post-Partum Depression. Journal of Trace Elements in Medicine and Biology, 21, 17-21.
https://doi.org/10.1016/j.jtemb.2006.10.001
[32]  Zi, A., Dudek, D., Szymaczek, M. and Nowak, G. (1999) Serum Trace Elements in Animal Models and Human Depression. Part II. Copper. Human Psychopharmacology, 451, 447-451.
https://doi.org/10.1002/(SICI)1099-1077(199910)14:7<447::AID-HUP106>3.0.CO;2-F
[33]  Russo, A.J. (2011) Analysis of Plasma Zinc and Copper Concentration, and Perceived Symptoms, in Individuals with Depression, Post Zinc and Anti-Oxidant Therapy. Nutrition and Metabolic Insights, 17, 19-27.
https://doi.org/10.4137/NMI.S6760
[34]  Jyostna, V. and Sudhakar, P. (2016) Neurobehavioral Alterations in Cadmium Exposed Rats. International Journal of Recent Scientific Research, 7, 9418-9424.
[35]  Kaoud, H., Kamel, M.M., Abdel-Razek, H., Kamel, G.M. and Ahmed, K. (2010) Neurobehavioural, Neurochemical and Neuromorphological Effects of Cadmium in Male Rats. The Journal of American Science, 6, 189-202.
[36]  Haider, S., Anis, L., Batool, Z., Sajid, I., Naqvi, F., Khaliq, S. and Ahmed, S. (2014) Short Term Cadmium Administration Dose Dependently Elicits Immediate Biochemical, Neurochemical and Neurobehavioral Dysfunction in Male Rats. Metabolic Brain Disease, 30, 83-92.
https://doi.org/10.1007/s11011-014-9578-4
[37]  Carola, V., D’Olimpio, F., Brunamonti, E., Mangia, F. and Renzi, P. (2002) Evaluation of the Elevated Plus-Maze and Open-Field Tests for the Assessment of Anxiety-Related Behaviour in Inbred Mice. Behavioural Brain Research, 134, 49-57.
https://doi.org/10.1016/S0166-4328(01)00452-1
[38]  Gentsch, C., Lichtsteiner, M. and Feer, H. (1987) Open Field and Elevated Plus-Maze: A Behavioural Comparison between Spontaneously Hypertensive (SHR) and Wistar-Kyoto (WKY) Rats and the Effects of Chlordiazepoxide. Behavioural Brain Research, 25, 101-107.
https://doi.org/10.1016/0166-4328(87)90003-9
[39]  Alicia, A. and Cheryl, A. (2007) The Use of the Elevated plus Maze as an Assay of Anxiety-Related Behavior in Rodents. NIH Public Access, 2, 322-328.
https://doi.org/10.1038/nprot.2007.44
[40]  Naranjo-Rodriguez, E.B., Osornio, A.O., Hernandez-Avitia, E., Mendoza-Fernandez, V. and Escobar, A. (2000) Anxiolytic-Like Actions of Melatonin, 5-Metoxytryptophol, 5-Hydroxytryptophol and Benzodiazepines on a Conflict Procedure. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 24, 117-129.
https://doi.org/10.1016/S0278-5846(99)00075-5
[41]  Porsolt, R.D., Anton, G., Blavet, N. and Jalfre, M. (1978) Behavioural Despair in Rats: A New Model Sensitive to Antidepressant Treatments. European Journal of Pharmacology, 47, 379-391.
https://doi.org/10.1016/0014-2999(78)90118-8
[42]  Benabid, N., Mesfioui, A. and Ouichou, A. (2008) Effects of Photoperiod Regimen on Emotional Behaviour in Two Tests for Anxiolytic Activity in Wistar Rat. Brain Research Bulletin, 75, 53-59.
https://doi.org/10.1016/j.brainresbull.2007.07.016
[43]  Zizza, M., Canonaco, M. and Facciolo, R.M. (2016) NeuroToxicology Neurobehavioral Alterations plus Transcriptional Changes of the Heat Shock Protein 90 and Hypoxia Inducible Factor-1 a in the Crucian Carp Exposed to Copper. Neurotoxicology, 52, 162-175.
https://doi.org/10.1016/j.neuro.2015.12.006
[44]  Han, M., Chang, J. and Kim, J. (2017) Loss of Divalent Metal Transporter 1 (DMT1) Function Promotes Brain Copper Accumulation and Increases Impulsivity. Journal of Neurochemistry, 138, 918-928.
https://doi.org/10.1111/jnc.13717
[45]  Schlegel-Zawadzka, M., Zieba, A., Dudek, D., Krosniak, M. and Szymaczek, M.N.G. (1999) Serum Trace Elements in Animal Models and Human Depression. Part II: Copper. Human Psychopharmacology: Clinical and Experimental, 14, 447-451.
https://doi.org/10.1002/(SICI)1099-1077(199910)14:7<447::AID-HUP106>3.0.CO;2-F
[46]  Manser, W.W.T., Khan, A. and Hasan, Z. (1989) Trace Element Studies on Karachi Population Part IV: Blood Copper, Zinc, Magnesium and Lead Levels in Psychiatric Patients with Depression, Mental Retardation and Seizure. Journal of Pakistan Medical Association, 39, 269-274.
[47]  Maes, M. (1995) Evidence for an Immune Response in Major Depression: A Review and Hypothesis. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 19, 11-38.
https://doi.org/10.1016/0278-5846(94)00101-M
[48]  Schmitt, J.A.J., Wingen, M., Ramaekers, J.G., Evers, E.A.T. and Riedel, W.J. (2006) Serotonin and Human Cognitive Performance. Current Pharmaceutical Design, 12, 2473-2486.
https://doi.org/10.2174/138161206777698909
[49]  Carver, C.S. and Miller, C.J. (2006) Relations of Serotonin Function to Personality: Current Views and a Key Methodological Issue. Psychiatry Research, 144, 1-15.
https://doi.org/10.1016/j.psychres.2006.03.013
[50]  Coulson, E.J., Jones, C.E., Underwood, C.K., Coulson, J. and Taylor, P.J. (2014) Copper Induced Oxidation of Serotonin: Analysis of Products and Toxicity Copper. Journal of Neurochemistry, 102, 1035-1043.
https://doi.org/10.1111/j.1471-4159.2007.04602.x
[51]  Azmitia, C. (1978) An Autoradiographic Analysis of the Differential Ascending Projections of the Dorsal and Median Raphe Nuclei in the Rat. Journal of Comparative Neurology, 179, 641-647.
https://doi.org/10.1002/cne.901790311
[52]  Vertes, R.P. (1991) A PHA-L Analysis of Ascending Projections of the Dorsal Raphe Nucleus in the Rat. Journal of Comparative Neurology, 313, 643-668.
https://doi.org/10.1002/cne.903130409
[53]  Kahn, R.S., Van Praag, H.M., Wetzler, S., Asnis, G.M. and Barr, G. (1988) Serotonin and Anxiety Revisited. Biological Psychiatry, 23, 189-208.
https://doi.org/10.1016/0006-3223(88)90091-1
[54]  Dar, A., Khatoon, S. and Section, P. (2000) Behavioral and Biochemical Studies of Dichloromethane Fraction from the Areca Catechu Nut. Pharmacology Biochemistry and Behavior, 65, 1-6.
https://doi.org/10.1016/S0091-3057(99)00179-3
[55]  Eriksen, N., Martin, G.M. and Benditt, E.P. (1960) Oxidation of the Indole Nucleus of 5-Hydroxytryptamine the Formation of Pigments: Isolation and Partial Characterization of a Dimer of 5-Hydroxytryptamine. The Journal of Biological Chemistry, 235, 1662-1667.
[56]  Wrona, M.Z. and Dryhurst, G. (1998) Oxidation of Serotonin by Superoxide Radical: Implications to Neurodegenerative Brain Disorders. Chemical Research in Toxicology, 11, 639-650.
https://doi.org/10.1021/tx970185w
[57]  Wrona, M.Z., Yang, Z., Mcadams, M., Connor-coates, S.O. and Dryhurst, G. (1995) Hydroxyl Radical-Mediated Oxidation of Serotonin: Potential Insights into the Neurotoxicity of Methamphetamine. Journal of Neurochemistry, 64, 1390-1400.
https://doi.org/10.1046/j.1471-4159.1995.64031390.x
[58]  Wrona, M.Z., Goyal, R.N., Turk, D.J., Blank, C.L. and Dryhurst, G. (1992) A Potentially Aberrant, Neurotoxic Metabolite of Serotonin. Journal of Neurochemistry, 59, 1392-1398.
https://doi.org/10.1111/j.1471-4159.1992.tb08452.x
[59]  Bowman, M.B. and Lewis, M.S. (1982) The Copper Hypothesis of Schizophrenia: A Review. Neuroscience & Biobehavioral Reviews, 6, 321-328.
https://doi.org/10.1016/0149-7634(82)90044-6
[60]  Przybyłkowski, A., Wawer, A., Jabłonka-salach, K., Grygorowicz, T. and Schnejder, A. (2013) Neurochemical and Behavioral Characteristics of Toxic Milk Mice: An Animal Model of Wilson’s Disease. Neurochemical Research, 38, 2037-2045.
https://doi.org/10.1007/s11064-013-1111-3
[61]  Yu, W., Jiang, H., Wang, J. and Xie, J. (2008) Copper (Cu2+) Induces Degeneration of Dopaminergic Neurons in the Nigrostriatal System of Rats. Neuroscience Bulletin, 24, 73-78.
https://doi.org/10.1007/s12264-008-0073-y
[62]  De Boecka, G., Nilsson, E., Elofsson, U., Vlaeminck, A. and Blust, R. (1995) Brain Monoamine Levels and Energy Status in Common Carp (Cyprinus carpio) after Exposure to Sublethal Levels of Copper. Aquatic Toxicology, 33, 265-277.
https://doi.org/10.1016/0166-445X(95)00022-V
[63]  Sheline, C.T., Choi, E.H., Dugan, L.L. and Choi, D.W. (2002) Cofactors of Mitochondrial Enzymes Attenuate Copper-Induced Death in Vitro and in Vivo. Annals of Neurology, 52, 195-204.
https://doi.org/10.1002/ana.10276
[64]  Wang, J., Rahman, M.F., Duhart, H.M., Newport, G.D., Patterson, T.A., Murdock, R.C., Hussain, S.M., Schlager, J.J. and Ali, S.F. (2009) Expression Changes of Dopaminergic System-Related Genes in PC12 Cells Induced by Manganese, Silver, or Copper Nanoparticles. Neurotoxicology, 30, 926-933.
https://doi.org/10.1016/j.neuro.2009.09.005
[65]  Strausak, D., Mercer, J.F.B., Dieter, H.H., Stremmel, W. and Multhaup, G. (2001) Copper in Disorders with Neurological Symptoms: Alzheimer’s, Menkes, and Wilson Diseases. Brain Research Bulletin, 55, 175-185.
https://doi.org/10.1016/S0361-9230(01)00454-3
[66]  Fischer, P.W.F., L’Abbé, M.R. and Giroux, A. (1990) Effects of Age, Smoking, Drinking, Exercise and Estrogen Use on Indices of Copper Status in Healthy Adults. Nutrition Research, 10, 1081-1090.
[67]  Linder, M.C. and Hazegh-Azam, M. (1996) Copper Biochemistry and Molecular Biology. The American Journal of Clinical Nutrition, 63, 797-811.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133