The Stanley Pool, an almost circular island about
thirty kilometers in diameter, crossed by the Congo River, is subject to
diversified erosion of its riverbanks. This study highlights description using
geotechnical particle size distribution analysis of soils of the shoreline that
make up the shoreline. Three critical areas of the island were examined to
characterize the origins of these erosion phenomena. The results obtained show
that the soil materials are mostly sands with very fine or fine grains
characteristic of very unstable soils. The morpho-sedimentological characteristics of the areas studied show that these
soils are plastic (with a Plasticity Index between 15 percent and 19 percent). The presence of water, action of currents or groundwater flow easily
destabilize the materials that make up the riverbank and cause the fines to
creep (Collapse of sandy riverbanks, Landslide of sandy riverbanks,…).
References
[1]
ASTM D422-63 (2007). Standard Test Method for Particle-Size Analysis of Soils (Withdrawn 2016).
[2]
ASTM D4318-00 (2000). Standard Test Methods for Liquid Limit, Plastic Limit and Plasticity Index of Soils (Vol. 4, pp. 1-14). Annual Book of ASTM Standards.
[3]
ASTM-D3080 (1998). Standard Test Method for Direct Shear Test of Soils under Consolidated Drained Conditions.
[4]
Casagli, N., Rinaldi, M., Gargini, A., & Curini, A. (1999). Pore Water Pressure and Streambank Stability: Results from a Monitoring Site on the Sieve River, Italy. Earth Surface Processes and Landforms, 24, 1095-1114. https://doi.org/10.1002/(SICI)1096-9837(199911)24:12<1095::AID-ESP37>3.0.CO;2-F
[5]
Couper, P. R., & Maddock, I. P. (2001). Subaerial Riverbank Erosion Processes and Their Interaction with Other Bank Erosion Mechanisms on the River Arrow, Warwickshire, UK. Earth Surface Processes and Landforms, 26, 631-646. https://doi.org/10.1002/esp.212
[6]
Dapporto, S., Rinaldi, M., & Casagli, N. (2001). Failure Mechanisms and Pore Water Pressure Conditions: Analysis of a Riverbank along the Arno River (Central Italy). Engineering Geology, 61, 221-242. https://doi.org/10.1016/S0013-7952(01)00026-6
[7]
Fitzjohn, C., Ternan, J. L., & Williams, A. G. (1998). Soil Moisture Variability in Semi-Arid Gully Catchment: Implication for Runoff and Erosion Control. Catena, 32, 55-70. https://doi.org/10.1016/S0341-8162(97)00045-3
[8]
Gaillardet, J., Dupré, B., & Allègre, C. A. (1995). Global Geochemical Mass Budget Applied to the Congo Basin Rivers: Erosion Rates and Continental Crust Composition. Geochimica et Cosmochimica Acta, 59, 3469-3485. https://doi.org/10.1016/0016-7037(95)00230-W
[9]
Gaucher, G. (1968). Traité de pédologie agricole: Le sol et ses caractéristiques agronomiques (p. 1). Paris: Dunod.
[10]
Hamel, V. B., Buffin-Bélanger, T., & Hétu, B. (2013). Contribution à l’étude de l’érosion des berges: Analyse à haute résolution spatio-temporelle des mouvements subaériens sur une berge de la rivière Ouelle, Québec, Canada. Géomorphologie: Relief, Processus, Environnement, 19, 119-132. https://doi.org/10.4000/geomorphologie.10176
[11]
Kirkby, M. J., & Morgan, R. P. C. (1980). Soil Erosion. Chichester: John Wiley & Sons.
[12]
Knapen, A., Poesen, J., Govers, G., Gyssels, G., & Nachtergaele, J. (2007). Resistance of Soils to Concentrated Flow Erosion: Earth-Science Review, 80, 75-109. https://doi.org/10.1016/j.earscirev.2006.08.001
[13]
Laraque, A., Bricquet, J.-P., Pandi, A., & Olivry, J.-C. (2009). A Review of Material Transport by the Congo River and Its Tributaries. Hydrological Processes, 23, 3216-3224. https://doi.org/10.1002/hyp.7395
[14]
Laraque, A., Mahé, G., Orange, D., & Marieu, B. (2001). Spatiotemporal Variations in Hydrological Regimes within Central Africa during the XXth Century. Journal of Hydrology, 245, 104-117. https://doi.org/10.1016/S0022-1694(01)00340-7
[15]
Lawler, D. M. (1992). Process Dominance in Bank Erosion Systems. In P. A. Carling, & G. E. Petts (Eds.), Lowland Floodplain Rivers Geomorphological Perspectives (pp. 117-143). Chichester: Wiley.
[16]
Mettauer, H., Tual, Y., Huck, Ch., & Trendel, R. (1983). De la connaissance du comportement physique et mecanique des sols de l’Est de la France. Agronomie, EDP Sciences, 3, 141-152. https://doi.org/10.1051/agro:19830205
[17]
Moukolo, N., Laraque, A., Olivry, J.-C., & Bricquet, J.-P. (1993). Transport en solution et en suspension par le fleuve Congo (Zaïre) et ses principaux affluents de la rive droite. Hydrological Sciences Journal, 38, 133-145. https://doi.org/10.1080/02626669309492651
[18]
Orange, D., Olivry, J.-C., & Censier, C. (1995). Variations et bilans de flux de matières particulaires et dissoutes de l’Oubangui à Bangui (de 1987 à 1992). In Grands Bassins Fluviaux Périatlantiques: Congo, Niger, Amazone, Actes du colloque PEGI-INSU-CNRS-ORSTOM (pp. 147-158). Paris: ORSTOM.
[19]
Probst, J. L., Nkounkou, R. R., Krempp, G., Bricquet, J.-P., Thiébaux, J.-P., & Olivry, J.-C. (1992). Dissolved Major Elements Exported by the Congo and the Ubangi Rivers during the Period 1987-1989. Journal of Hydrology, 135, 237-257. https://doi.org/10.1016/0022-1694(92)90090-I
[20]
Shainberg, I., Goldstein, D., & Levy, G. J. (1996). Rill Erosion Dependence on Soil Water Content Aging, and Temperature. Soil Science Society of America Journal, 60, 916-922. https://doi.org/10.2136/sssaj1996.03615995006000030034x
[21]
Thorne, C. R., & Tovey, N. K. (1981). Stability of Composite Riverbanks. Earth Surface Processes and Landforms, 6, 469-484. https://doi.org/10.1002/esp.3290060507
[22]
Wei, L., Zhang, B., & Wang, M. (2007). Effects of Antecedent Soil Moisture on Runoff and Soil Erosion in Valley Cropping Systems, Agriculture Water Management, 94, 54-62. https://doi.org/10.1016/j.agwat.2007.08.007
[23]
Wood, A. L., Simon, A., Downs, P. W., & Thorne, C. R. (2001). Bank-Toe Processes in Incised Channels: The Role of Apparent Cohesion in the Entrainment of Failed Bank Materials. Hydrological Processes, 15, 39-61. https://doi.org/10.1002/hyp.151
[24]
Wouters, T., & Wolff, E. (2010). A Contribution to the Analysis of Urban Erosion in Kinshasa (D.R.C.). Belge, 3, 1-24.