全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Properties of Zinc Ferrite Nanoparticles Due to PVP Mediation and Annealing at 500°C

DOI: 10.4236/anp.2019.82003, PP. 36-45

Keywords: ZFNPs, Poly (Vinyl Pyrrolidone), Annealing, Super Paramagnetic, Properties

Full-Text   Cite this paper   Add to My Lib

Abstract:

In contributing to the improvement of Ferrite Magnetic nanoparticles, the effects of Poly (Vinyl Pyrrolidone) (PVP) and annealing on the structural and magnetic properties of Zinc ferrite nanoparticles (ZFNPs) synthesis were investigated in this work. The effects were evaluated using the X-ray diffraction (XRD) spectroscopy, Scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR) and Vi-brating sample magnetometer (VSM). The XRD analysis confirms a good formation of the inverse spinel crystal structure with an average particle size of 1.3 nm to 15.2 nm and from 1.6 nm to 21.1 nm for the ZFNPs as-prepared and PVP mediated ZFNPs for the un-annealed and annealed samples, respectively. The SEM image reveals an increase in the particle size for both the as-prepared and PVP mediated samples after annealing at 500°C. The FTIR also reveals the inverse spinel structure for the as-prepared and annealed samples, which witnesses a vibrational red shift towards a higher wave number for the annealed samples. The VSM analysis indicates the superparamagnetic behavior of PVP mediated and annealed sample with zero remanence magnetization (Mr) and Coercivity (Hc). The saturation magnetization (Ms) increases from 1.31 emu/g, for the as-prepared samples, to 4.31 emu/g after the annealing and from 1.18 emu/g, for the PVP mediated, to 6.38 emu/g after annealing. These effects have been attributed to the cationic re-arrangement on the lattice site after the annealing. This presents a superior material for various applications in nanotechnology.

References

[1]  Naidu, K.C.B. and Madhuri, W. (2017) Microwave Processed Bulk and Nano NiMg Ferrites: A Comparative Study on X-Band Electromagnetic Interference Shielding Properties. Materials Chemistry and Physics, 187, 164-176.
https://doi.org/10.1016/j.matchemphys.2016.11.062
[2]  Samavati, A. and Ismail, A.F. (2017) Antibacterial Properties of Copper-Substituted Cobalt Ferrite Nanoparticles Synthesized by Co-Precipitation Method. Particuology, 30, 158-163.
https://doi.org/10.1016/j.partic.2016.06.003
[3]  Sharma, R., Thakur, P., Kumar, M., Thakur, N., Negi, N.S., Sharma, P. and Sharma, V. (2016) Improvement in Magnetic Behaviour of Cobalt Doped Magnesium Zinc Nano-Ferrites via Co-Precipitation Route. Journal of Alloys and Compounds, 684, 569-581.
https://doi.org/10.1016/j.jallcom.2016.05.200
[4]  Tartaj, P., del Puerto Morales, M., Veintemillas-Verdaguer, S., González-Carreno, T. and Serna, C.J. (2003) The Preparation of Magnetic Nanoparticles for Applications in Biomedicine. Journal of Physics D: Applied Physics, 36, R182.
https://doi.org/10.1088/0022-3727/36/13/202
[5]  Dantas, J., Leal, E., Mapossa, A.B., Cornejo, D.R. and Costa, A.C.F.M. (2017) Magnetic Nanocatalysts of Ni0. 5Zn0. 5Fe2O4 Doped with Cu and Performance Evaluation in Transesterification Reaction for Biodiesel Production. Fuel, 191, 463-471.
https://doi.org/10.1016/j.fuel.2016.11.107
[6]  Naseri, M.G., Saion, E.B., Hashim, M., Shaari, A.H. and Ahangar, H.A. (2011) Synthesis and Characterization of Zinc Ferrite Nanoparticles by a Thermal Treatment Method. Solid State Communications, 151, 1031-1035.
https://doi.org/10.1016/j.ssc.2011.04.018
[7]  Yeary, L.W., Moon, J.W., Rawn, C.J., Love, L.J., Rondinone, A.J., Thompson, J.R., Chakoumakos, B.C. and Phelps, T.J. (2011) Magnetic Properties of Bio-Synthesized Zinc Ferrite Nanoparticles. Journal of Magnetism and Magnetic Materials, 323, 3043-3048.
https://doi.org/10.1016/j.jmmm.2011.06.049
[8]  Zaharieva, K., Rives, V., Tsvetkov, M., Cherkezova-Zheleva, Z., Kunev, B., Trujillano, R., Mitov, I. and Milanova, M. (2015) Preparation, Characterization and Application of Nanosized Copper Ferrite Photocatalysts for Dye Degradation under UV Irradiation. Materials Chemistry and Physics, 160, 271-278.
https://doi.org/10.1016/j.matchemphys.2015.04.036
[9]  Grasset, F., Labhsetwar, N., Li, D., Park, D.C., Saito, N., Haneda, H., Cador, O., Roisnel, T., Mornet, S., Duguet, E., Etourneau, J. and Portier, J. (2002) Synthesis and Magnetic Characterization of Zinc Ferrite Nanoparticles with Different Environments: Powder, Colloidal Solution, and Zinc Ferrite-Silica Core-Shell Nanoparticles. Langmuir, 18, 8209-8216.
[10]  Naseri, M.G., Halimah, M.K., Dehzangi, A., Kamalianfar, A., Saion, E.B. and Majlis, B.Y. (2014) A Comprehensive Overview on the Structure and Comparison of Magnetic Properties of Nanocrystalline Synthesized by a Thermal Treatment Method. Journal of Physics and Chemistry of Solids, 75, 315-327.
https://doi.org/10.1016/j.jpcs.2013.11.004
[11]  Wu, W., He, Q. and Jiang, C. (2008) Magnetic Iron Oxide Nano-particles: Synthesis and Surface Functionalization Strategies. Nanoscale Research Letters, 3, 397.
https://doi.org/10.1007/s11671-008-9174-9
[12]  Laurent, S., Forge, D., Port, M., Roch, A., Robic, C., Vander Elst, L. and Muller, R.N. (2008) Magnetic Iron Oxide Nanoparticles: Synthesis, Stabilization, Vectorization, Physicochemical Characterizations, and Biological Applications. Chemical Reviews, 108, 2064-2110.
https://doi.org/10.1021/cr068445e
[13]  Berry, C.C. and Curtis, A.S. (2003) Functionalisation of Magnetic Nanoparticles for Applications in Biomedicine. Journal of physics D: Applied physics, 36, R198.
https://doi.org/10.1088/0022-3727/36/13/203
[14]  Afzal, S., Khan, R., Zeb, T., ur Rahman, M., Ali, S., Khan, G., ur Rahman, Z., Hussain, A., et al. (2018) Structural, Optical, Dielectric and Magnetic Properties of PVP Coated Magnetite (Fe3O4) Nanoparticles. Journal of Materials Science: Materials in Electronics, 29, 20040-20050.
https://doi.org/10.1007/s10854-018-0134-6
[15]  Kombaiah, K., Vijaya, J.J., Kennedy, L.J., Bououdina, M., Kaviyarasu, K., Ramalingam, R.J., Munusamy, M.A. and AlArfaj, A. (2017) Effect of Cd2+ Concentration on ZnFe2O4 Nanoparticles on the Structural, Optical and Magnetic Properties. Optik, 135, 190-199.
https://doi.org/10.1016/j.ijleo.2017.01.066
[16]  Hcini, S., Selmi, A., Rahmouni, H., Omri, A. and Bouazizi, M.L. (2017) Structural, Dielectric and Complex Impedance Properties of T0. 6Co0. 4Fe2O4 (T= Ni, Mg) Ferrite Nanoparticles Prepared by Sol Gel Method. Ceramics International, 43, 2529-2536.
https://doi.org/10.1016/j.ceramint.2016.11.055
[17]  Satalkar, M., Kane, S.N., Kumaresavanji, M. and Araujo, J.P. (2017) On the Role of Cationic Distribution in Determining Magnetic Properties of Zn0.7-xNixMg0.2Cu0.1Fe2O4 Nano Ferrite. Materials Research Bulletin, 91, 14-21.
https://doi.org/10.1016/j.materresbull.2017.03.021
[18]  Smit, J. (1971) Magnetic Properties of Materials. McGraw-Hill, New York.
[19]  Snelling, E.C. (1988) Soft Ferrites, Properties and Applications. Butter Worth and Co. Ltd., London.
[20]  Petrova, E., Kotsikau, D. and Pankov, V. (2015) Structural Characterization and Magnetic Properties of Sol-Gel Derived ZnxFe3–xO4 Nanoparticles. Journal of Magnetism and Magnetic Materials, 378, 429-435.
https://doi.org/10.1016/j.jmmm.2014.11.076
[21]  Sharma, R., Thakur, P., Sharma, P. and Sharma, V. (2017) Ferrimagnetic Ni2+ Doped Mg-Zn Spinel Ferrite Nanoparticles for High Density Information Storage. Journal of Alloys and Compounds, 704, 7-17.
https://doi.org/10.1016/j.jallcom.2017.02.021
[22]  Abbas, M., Rao, B.P. and Kim, C. (2014) Shape and Size-Controlled Synthesis of Ni Zn Ferrite Nanoparticles by Two Different Routes. Materials Chemistry and Physics, 147, 443-451.
https://doi.org/10.1016/j.matchemphys.2014.05.013
[23]  Karimi, Z., Karimi, L. and Shokrollahi, H. (2013) Nano-Magnetic Particles Used in Biomedicine: Core and Coating Materials. Materials Science and Engineering: C, 33, 2465-2475.
https://doi.org/10.1016/j.msec.2013.01.045
[24]  Hankare, P.P., Sankpal, U.B., Patil, R.P., Jadhav, A.V., Garadkar, K.M. and Chougule, B.K. (2011) Magnetic and Dielectric Studies of Nanocrystalline Zinc Substituted Cu-Mn Ferrites. Journal of Magnetism and Magnetic Materials, 323, 389-393.
https://doi.org/10.1016/j.jmmm.2010.08.050
[25]  Makovec, D. and Drofenik, M. (2008) Non-Stoichiometric Zinc-Ferrite Spinel Nanoparticles. Journal of Nanoparticle Research, 10, 131-141.
https://doi.org/10.1007/s11051-008-9400-5
[26]  Kamari, H., Naseri, M. and Saion, E. (2014) A Novel Research on Behavior of Zinc Ferrite Nanoparticles in Different Concentration of Poly (vinyl pyrrolidone) (PVP). Metals, 4, 118-129.
https://doi.org/10.3390/met4020118
[27]  Gordon, T., Perlstein, B., Houbara, O., Felner, I., Banin, E. and Margel, S. (2011) Synthesis and Characterization of Zinc/Iron Oxide Composite Nanoparticles and Their Antibacterial Properties. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 374, 1-8.
https://doi.org/10.1016/j.colsurfa.2010.10.015
[28]  Cullity, B.D. (1978) Elements of X-Ray Diffraction. Addison-Wesley, Boston, MA, 359.
[29]  Bushroa, A.R., Rahbari, R.G., Masjuki, H.H. and Muhamad, M.R. (2012) Approximation of Crystallite Size and Microstrain via XRD Line Broadening Analysis in TiSiN Thin Films. Vacuum, 86, 1107-1112.
https://doi.org/10.1016/j.vacuum.2011.10.011
[30]  Jaberolansar, E., Kameli, P., Ahmadvand, H. and Salamati, H. (2016) Synthesis and Characterization of PVP-Coated Co0. 3Zn0. 7Fe2O4 Ferrite Nanoparticles. Journal of Magnetism and Magnetic Materials, 404, 21-28.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133