In this work, by using an indirect method based on the correspondence between the amount of oxygen in the atmosphere and the quantity of fossil fuel in the Earth, the resources of fossil fuels were evaluated to be about 1.9 × 1016 ton. Unluckily, only a small part of these fuels is easily accessible. Nevertheless, their quantity is so high that it is reasonable to assume that fossil fuels will continue to dominate the global energy scene for several years. The extensive use of fossil fuels alters the ratio between oxygen and carbon dioxide in the atmosphere. The effects of this change are however so slow that they become important only on the geological time scale.
References
[1]
Abas, K., Kalair, A., & Khan, N. (2015). Review of Fossil Fuels and Future Energy Tech-nologies. Futures, 69, 31-49. https://doi.org/10.1016/j.futures.2015.03.003
[2]
Andruleit, H., Bahr, A., Babies, H. G., Franke, D., Meßner, J., Pierau, R., Schauer, M., Schmidt, S., & Weihmann, S. Energy Study 2013. (2013). Reserves, Resources and Availability of Energy Resources. Hannover: Bundesanstalt für Geowissenschaften und Rohstoffe (BGR).
[3]
Blake, J. B., Baker, D. N., Turner, N., Ogilvie, K. W., & Lepping, R. P. (1997). Correlation of Changes in the Outer-Zone Relativistic Electron Population with Upstream Solar wind and Magnetic Field Measurements. Geophysical Research Letters, 24, 927-929.
https://doi.org/10.1029/97GL00859
[4]
Holland, H. D. (2006). The Oxy-genation of the Atmosphere and Oceans. Philosophical Transactions of the Royal Society B: Biological Sciences, 361, 903-915.
https://doi.org/10.1098/rstb.2006.1838
[5]
Johnson, M. H., & Kierein, J. (1992). Combined Release and Radiation Effects Satellite (CRRES), Spacecraft and Mission. Journal of Spacecraft and Rockets, 29, 556-563.
https://doi.org/10.2514/3.55641
[6]
Lyons, T. W., Reinhard, C. T., & Pla-navsky, N. J. (2014). The Rise of Oxygen in Earth’s Early Ocean and Atmosphere. Nature, 506, 307-315.
https://doi.org/10.1038/nature13068
[7]
Martin, D., McKenna, H., & Livina, V. (2017). The Human Physiological Impact of Global Deoxygenation. The Journal of Physiological Sciences, 67, 97-106.
https://doi.org/10.1007/s12576-016-0501-0
[8]
Nuccio, P. M., Caracausi, A., & Costa, M. (2014). Mantle-Derived Fluids Discharged at the Bradanic Fore-deep/Apulian Foreland Boundary: The Maschito Geothermal Gas Emissions (Southern Italy). Marine and Petroleum Geology, 55, 309-314.
https://doi.org/10.1016/j.marpetgeo.2014.02.009
[9]
Schaub, G., & Turek, T. (2011). Energy Flows, Material Cycles and Global Development. Berlin Heidelberg: Springer-Verlag. https://doi.org/10.1007/978-3-642-12736-6
[10]
Schlesinger, W. H. (1977). Biogeochemistry: An Analysis of Global Change (2nd edn). San Diego: Academic Press.
[11]
Sterman, J. D., & Richardson, G. P. (1985). An Experiment to Evaluate Methods for Estimating Fossil Fuel Resources. Journal of Forecasting, 4, 197-226.
https://doi.org/10.1002/for.3980040208
[12]
Van Allen, J. A., & Frank, L. A. (1959). Radiation around the Earth to a Radial Distance of 107,400 km. Nature, 183, 430-434. https://doi.org/10.1038/183430a0
[13]
Van Allen, J. A., Ludwig, G. H., Ray, E. C., & McIlwain, C. E. (1958). Observation of High Intensity Radiation by Satellites 1958 Alpha and Gamma. Journal of Jet Propulsion, 28, 588-592. https://doi.org/10.2514/8.7396
[14]
Voigt, C., Jessberger, P., Jurkat, T., Kaufmann, S., Baumann, R., Schlager, H., Bobrowski, N., Giuffrida, G., & Salerno, G. (2014). Evolution of CO2, SO2, HCl, and HNO3 in the Volcanic Plumes from Etna. Ge-ophysical Research Letters, 41, 2196-2203.
https://doi.org/10.1002/2013GL058974
[15]
Yang, X., Gaillard, F., & Scaillet, B. (2014). A Relatively Reduced Hadean Continental Crust and Implications for the Early Atmosphere and Crustal Rheology. Earth and Planetary Science Letters, 393, 210-219. https://doi.org/10.1016/j.epsl.2014.02.056