全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Isolation and Characterization of Endophytic Fungi from Purslane and the Effects of Isolates on the Growth of the Host

DOI: 10.4236/aim.2019.95026, PP. 438-453

Keywords: Endophytic Fungi, Purslane, Portulaca oleracea L., Growth Promotion, Germination

Full-Text   Cite this paper   Add to My Lib

Abstract:

Purslane, a common weed, has been used as food or folk medicine in many countries. The growth, medicinal components and nutrient contents of the plant are closely associated with endophytes, especially endophytic fungi. In this study, the endophytic fungi associated with purslane were isolated, and the effects of the isolates on the host were investigated to lay a foundation for further research and development of purslane resources. The results showed that a total of eight endophytic fungi were isolated from purslane (collected from Hohhot, Inner Mongolia, China), and they belonged to the genera Penicillium (isolates K, N, P, M and I), Chaetomium (isolate J), Fusarium (isolate H) and Petriella (isolate O). Moreover, the growth of purslane was significantly influenced by its endophytic fungi. Isolate M can significantly decrease the germination rate, while J can significantly increase the germination rate of purslane. In addition, H, J and M can significantly increase the bud length of purslane, and the fermentation broth of P has a negative influence on the bud length of purslane. M and I can significantly increase the height, fresh weight and chlorophyll content of purslane due, in part, to the lower pH of the fermentation broth of I and M.

References

[1]  Porras-Alfaro, A. and Bayman, P. (2011) Hidden Fungi, Emergent Properties: Endophytes and Microbiomes. Annual Review of Phytopathology, 49, 291-315.
https://doi.org/10.1146/annurev-phyto-080508-081831
[2]  Wilson, D. (1995) Endophyte: The Evolution of a Term, and Clarification of Its Use and Definition. Oikos, 73, 274-276.
https://doi.org/10.2307/3545919
[3]  Partidamartínez, L.P. and Heil, M. (2011) The Microbe-Free Plant: Fact or Artifact? Frontiers in Plant Science, 2, 100.
https://doi.org/10.3389/fpls.2011.00100
[4]  Tan, R.X. and Zou, W.X. (2001) Endophytes: A Rich Source of Functional Metabolites. Natural Product Reports, 18, 448-459.
https://doi.org/10.1039/b100918o
[5]  Stierle, A., Strobel, G. and Stierle, D. (1993) Taxol and Taxane Production by Taxomyces andreanae, an Endophytic Fungus of Pacific Yew. Science, 260, 214-216.
https://doi.org/10.1126/science.8097061
[6]  Schulz, B., Boyle, C., Draeger, S., et al. (2002) Endophytic Fungi: A Source of Novel Biologically Active Secondary Metabolites. Mycological Research, 106, 996-1004.
https://doi.org/10.1126/science.8097061
[7]  Waller, F., Achatz, B., Baltruschat, H., et al. (2005) The Endophytic Fungus Piriformospora indica Reprograms Barley to Salt-Stress Tolerance, Disease Resistance, and Higher Yield. Proceedings of the National Academy of Sciences of the United States of America, 102, 13386-13391.
https://doi.org/10.1073/pnas.0504423102
[8]  Radhakrishnan, R., Kang, S.M., Baek, I.Y., et al. (2014) Characterization of Plant Growth-Promoting Traits of Penicillium Species against the Effects of High Soil Salinity and Root Disease. Journal of Plant Interactions, 9, 754-762.
https://doi.org/10.1080/17429145.2014.930524
[9]  Yang, B., Wang, X.M., Ma, H.Y., et al. (2014) Effects of the Fungal Endophyte Phomopsis Liquidambari, on Nitrogen Uptake and Metabolism in Rice. Plant Growth Regulation, 73, 165-179.
https://doi.org/10.1007/s10725-013-9878-4
[10]  Athman, S.Y., Dubois, T., Coyne, D., et al. (2006) Effect of Endophytic Fusarium oxysporum on Host Preference of Radopholus similis to Tissue Culture Banana Plants. Journal of Nematology, 38, 455-460.
[11]  Waqas, M., Khan, A.L., Kamran, M., et al. (2012) Endophytic Fungi Produce Gibberellins and Indoleacetic Acid and Promotes Host-Plant Growth during Stress. Molecules, 17, 10754-10773.
https://doi.org/10.3390/molecules170910754
[12]  Kharwar, R.N., Verma, V.C., Kumar, A., et al. (2009) Javanicin, an Antibacterial Naphthaquinone from an Endophytic Fungus of Neem, Chloridium sp. Current Microbiology, 58, 233-238.
https://doi.org/10.1007/s00284-008-9313-7
[13]  Zhang, C.L., Zheng, B.Q., Lao, J.P., et al. (2008) Clavatol and Patulin Formation as the Antagonistic Principle of Aspergillus clavatonanicus, an Endophytic Fungus of Taxus mairei. Applied Microbiology and Biotechnology, 78, 833-840.
https://doi.org/10.1007/s00253-008-1371-z
[14]  İsmail, O., Figen, A.K. and Pişkin, S. (2015) Effects of Open-Air Sun Drying and Pre-Treatment on Drying Characteristics of Purslane (Portulaca oleracea L.). Heat and Mass Transfer, 51, 807-813.
https://doi.org/10.1007/s00231-014-1452-8
[15]  Xiang, L., Xing, D., Wang, W., et al. (2005) Alkaloids from Portulaca oleracea L. Phytochem, 66, 2595-2601.
https://doi.org/10.1016/j.phytochem.2005.08.011
[16]  Proctor, C.A. (2013) Biology and Control of Common Purslane (Portulaca oleracea L.). University of Nebraska-Lincoln, Lincoln.
[17]  Shen, H., Tang, G., Zeng, G., et al. (2013) Purification and Characterization of an Antitumor Polysaccharide from Portulaca oleracea L. Carbohydrate Polymers, 93, 395-400.
https://doi.org/10.1016/j.carbpol.2012.11.107
[18]  Chan, K., Islam, M.W., Kamil, M., et al. (2000) The Analgesic and Anti-Inflammatory Effects of Portulaca oleracea L. subsp. Sativa (Haw.) Celak. Journal of Ethnopharmacology, 73, 445-451.
https://doi.org/10.1016/S0378-8741(00)00318-4
[19]  Meng, Y., Ying, Z., Xiang, Z., et al. (2016) The Anti-Inflammation and Pharmacokinetics of a Novel Alkaloid from Portulaca oleracea L. Journal of Pharmacy and Pharmacology, 68, 397-405.
https://doi.org/10.1111/jphp.12526
[20]  Taechowisan, T., Lu, C., Shen, Y. and Lumyong, S. (2007) Antitumor Activity of 4-Arylcoumarins from Endophytic Streptomyces aureofaciens CMUAc130. Journal of Cancer Research and Clinical Oncology, 3, 86-91.
https://doi.org/10.4103/0973-1482.34685
[21]  Weber, D., Sterner, O., Anke, T., et al. (2004) Phomol, a New Antiinflammatory, Metabolite from an Endophyte of the Medicinal Plant Erythrina cristagalli. Cheminform, 57, 559-563.
https://doi.org/10.7164/antibiotics.57.559
[22]  Wu, Y., Shang, S.H., Yang, Q., et al. (2014) Isolation and Identification of Endophytic Bacteria from Purslane. Journal of Shanxi Agricultural University, 34, 117-120. (In Chinese)
[23]  Radhakrishnan, R., Shim, K.B., Lee, B.W., et al. (2013) IAA Producing Penicillium sp. NICS01 Triggers Plant Growth and Suppresses Fusarium sp.-Induced Oxidative Stress Insesame (Sesamum indicum L.). Journal of Microbiology and Biotechnology, 23, 856-863.
https://doi.org/10.4014/jmb.1209.09045
[24]  Porra, R.J., Thompson, W.A. and Kriedemann, P.E. (1989) Determination of Accurate Extinction Coefficients and Simultaneous Equations for Assaying Chlorophylls a and b Extracted with Four Different Solvents: Verification of the Concentration of Chlorophyll Standards by Atomic Absorption Spectroscopy. Biochimica et Biophysica Acta, 975, 384-394.
https://doi.org/10.1016/S0005-2728(89)80347-0
[25]  Wei, J.C. (1979) Handbook of Fungal Identification. Shanghai Science and Technology Press, Shanghai.
[26]  Zhao, L., Xu, Y., Lai, X.H., et al. (2015) Screening and Characterization of Endophytic Bacillus and Paenibacillus Strains from Medicinal Plant Lonicera japonica for Use as Potential Plant Growth Promoters. Brazilian Journal of Microbiology, 46, 977-989.
https://doi.org/10.1590/S1517-838246420140024
[27]  Hamayun, M., Khan, S.A., Iqbal, I., et al. (2010) Isolation of a Gibberellin-Producing Fungus (Penicillium sp. MH7) and Growth Promotion of Crown Daisy (Chrysanthemum coronarium). Journal of Microbiology and Biotechnology, 20, 202-207.
https://doi.org/10.4014/jmb.0905.05040
[28]  Sandhu, D.K.S. and Hu, R.S.A. (1963) New Species of Penicillium Isolated from Sputum. Canadian Journal of Botany, 41, 1273-1274.
https://doi.org/10.1139/b63-105
[29]  Patil, N.S., Waghmare, S.R. and Jadhav, J.P. (2013) Purification and Characterization of an Extracellular Antifungal Chitinase from Penicillium ochrochloron MTCC 517 and Its Application in Protoplast Formation. Process Biochemistry, 48, 176-183.
https://doi.org/10.1016/j.procbio.2012.11.017
[30]  Rančić, A., Soković, M., Karioti, A., et al. (2006) Isolation and Structural Elucidation of Two Secondary Metabolites from the Filamentous Fungus Penicillium ochrochloron with Antimicrobial Activity. Environmental Toxicology and Pharmacology, 22, 80-84.
https://doi.org/10.1016/j.etap.2005.12.003
[31]  Van den Berg, M.A., Albang, R., Albermann, K., et al. (2008) Genome Sequencing and Analysis of the Filamentous Fungus Penicillium chrysogenum. Nature Biotechnology, 26, 1161-1168.
https://doi.org/10.1038/nbt.1498
[32]  Gao, S.S., Li, X.M., Du, F.Y., et al. (2011) Secondary Metabolites from a Marine-Derived Endophytic Fungus Penicillium chrysogenum QEN-24S. Marine Drugs, 9, 59-70.
https://doi.org/10.3390/md9010059
[33]  Devi, P., Rodrigues, C., Naik, C.G., et al. (2012) Isolation and Characterization of Antibacterial Compound from a Mangrove-Endophytic Fungus, Penicillium chrysogenum MTCC 5108. Indian Journal of Microbiology, 52, 617-623.
https://doi.org/10.1007/s12088-012-0277-8
[34]  Wang, X., Sena Filho, J.G., Hoover, A.R., et al. (2010) Chemical Epigenetics Alters the Secondary Metabolite Composition of Guttate Excreted by an Atlantic-Forest-Soil-Derived Penicillium citreonigrum. Journal of Natural Products, 73, 942-948.
https://doi.org/10.1021/np100142h
[35]  Yuan, W.H., Wei, Z.W., Dai, P., et al. (2014) Halogenated Metabolites Isolated from Penicillium citreonigrum. Chemistry and Biodiversity, 11, 1078-1087.
https://doi.org/10.1002/cbdv.201300349
[36]  Zakaria, L. (2011) Endophytic Fusarium spp. from Wild Banana (Musa acuminata) Roots. African Journal of Microbiology Research, 5, 3600-3602.
https://doi.org/10.5897/AJMR11.298
[37]  Kour, A., Shawl, A.S., Rehman, S., et al. (2008) Isolation and Identification of an Endophytic Strain of Fusarium oxysporum Producing Podophyllotoxin from Juniperus recurva. World Journal of Microbiology and Biotechnology, 24, 1115-1121.
https://doi.org/10.1007/s11274-007-9582-5
[38]  Zhao, J., Zhong, L., Zou, L., et al. (2014) Efficient Promotion of the Sprout Growth and Rutin Production of Tartary Buckwheat by Associated Fungal Endophytes. Cereal Research Communications, 42, 401-412.
https://doi.org/10.1556/CRC.2013.0068
[39]  Abou Alhamed, M.F. and Shebany, Y.M. (2012) Endophytic Chaetomium globosum Enhances Maize Seedling Copper Stress Tolerance. Plant Biology, 14, 859-863.
https://doi.org/10.1111/j.1438-8677.2012.00608.x
[40]  Altschul, S.F., Madden, T.L., Schaffer, A.A., et al. (1997) Gapped BLAST and PSI-BLAST: A New Generation of Protein Database Search Programs. Nucleic Acids Research, 25, 3389-3402.
https://doi.org/10.1093/nar/25.17.3389
[41]  Lee, K.K., Gloer, J.B., Scott, J.A., et al. (1995) Petriellin A: A Novel Antifungal Depsipeptide from the Coprophilous Fungus Petriella Sordid. The Journal of Organic Chemistry, 60, 5384-5385.
https://doi.org/10.1021/jo00122a010
[42]  Sanchez-Azofeifa, A., Oki, Y., Wilson, F.G., et al. (2012) Relationships between Endophyte Diversity and Leaf Optical Properties. Trees, 26, 291-299.
https://doi.org/10.1007/s00468-011-0591-5
[43]  Deng, Z., Zhang, R., Shi, Y., et al. (2014) Characterization of Cd-, Pb-, Zn- Resistant Endophytic Lasiodiplodia sp. MXSF31 from Metal Accumulating Portulaca oleracea and Its Potential in Promoting the Growth of Rape in Metal-Contaminated Soils. Environmental Science and Pollution Research, 21, 2346-2357.
https://doi.org/10.1007/s11356-013-2163-2
[44]  Hubbard, M., Germida, J.J. and Vujanovic, V. (2012) Fungal Endophytes Enhance Wheat Heat and Drought Tolerance in Terms of Grain Yield and Second-Generation Seed Viability. Journal of Applied Microbiology, 90, 137-149.
https://doi.org/10.1139/b11-091
[45]  Clay, K. (1987) Effects of Fungal Endophytes on the Seed and Seedling Biology of Lolium perenne and Festuca arundinacea. Oecologia, 73, 358-362.
https://doi.org/10.1007/BF00385251
[46]  Hopen, H.J. (1972) Growth of Common Purslane as Influencing Control and Importance as a Weed. Weed Science, 20, 20-23.
[47]  Gundel, P.E., Maseda, P.H., Ghersa, C.M., et al. (2010) Effects of the Neotyphodium Endophyte Fungus on Dormancy and Germination Rate of Lolium multiflorum Seeds. Austral Ecology, 31, 767-775.
https://doi.org/10.1111/j.1442-9993.2006.01638.x
[48]  Yeon-Sik, C., In-Jung, L., Jong-Myeong, K., et al. (2008) Plant Growth Promotion and Penicillium citrinum. BMC Microbiology, 8, 589-591.
[49]  Santos, B.M., Dusky, J.A., Stall, W.M., et al. (2004) Phosphorus Absorption in Lettuce, Smooth Pigweed (Amaranthus hybridus), and Common Purslane (Portulaca oleracea) Mixtures. Weed Science, 52, 389-394.
https://doi.org/10.1614/WS-03-053R
[50]  Kaur, C., Selvakumar, G. and Ganeshamurthy, A.N. (2016) Organic Acids in the Rhizosphere: Their Role in Phosphate Dissolution. In: Singh, D.P., Singh, H.B. and Prabha, R., Eds., Microbial Inoculants in Sustainable Agricultural Productivity, 2th Edition, Springer, Berlin, 165-177.
https://doi.org/10.1007/978-81-322-2644-4_11
[51]  Wakelin, S.A., Gupta, V.V., Harvey, P.R., et al. (2007) The Effect of Penicillium fungi on Plant Growth and Phosphorus Mobilization in Neutral to Alkaline Soils from Southern Australia. Canadian Journal of Microbiology, 53, 106.
https://doi.org/10.1139/w06-109
[52]  Yang, C., Feng, L. and Yue, M. (2009) Studies on the Characteristics of Seed Germination of a Vicious Weed Species, Common Purslane. Plant Protection, 1, 62-56. (In Chinese)

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133