Many mobile robotics applications, especially in industrial environments, require the robot to perform safe navigation and then reach the goal with a high precision. In this research work, the objective is to analyze the appropriateness of autonomous natural navigation strategies for mobile manipulation tasks. The system must position itself in a realistic map, follow a path closely and then achieve an accurate positioning in the destination point in order to be able to perform the manipulation, inspection or pick task efficiently. Autonomous navigation is not able to fulfill the accuracy required by some of the jobs so that a second positioning system using vision is proposed in this paper. The experiments show that localization systems have, on average, an error greater than a decimetre and how an additional positioning system can reduce it to a few millimetres.
References
[1]
Martínez-Barberá, H. and Herrero-Pérez, D. (2010) Autonomous Navigation of an Automated Guided Vehicle in Industrial Environments. Robotics and Computer-Integrated Manufacturing, 26, 296-311. https://doi.org/10.1016/j.rcim.2009.10.003
[2]
Röwekämper, J., Sprunk, C., Tipaldi, G.D., Stachniss, C., Pfaff, P. and Burgard, W., (2012) On the Position Accuracy of Mobile Robot Localization Based on Particle Filters Combined with Scan Matching. 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, Vilamoura, 7-12 October 2012, 3158-3164. https://doi.org/10.1109/IROS.2012.6385988
[3]
Tang, J., Chen, Y., A. Jaakkola, J., Liu, J., Hyyppä, J. and Hyyppä, H. (2014) NAVIS-An UGV Indoor Positioning System Using Laser Scan Matching for Large-Area Real-Time Applications. Sensors, 14, 11805-11824. https://doi.org/10.3390/s140711805
[4]
Gao, Y., Liu, S., Atia, M.M. and Noureldin, A. (2015) INS/GPS/LiDAR Integrated Navigation System for Urban and Indoor Environments Using Hybrid Scan Matching Algorithm. Sensors, 15, 23286-23302. https://doi.org/10.3390/s150923286
[5]
Sturm, J., Engelhard, N., Endres, F., Burgard, W. and Cremers, D. (2012) A Benchmark for the Evaluation of RGB-D Slam Systems. 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, Vilamoura, 7-12 October 2012, 573-580. https://doi.org/10.1109/IROS.2012.6385773
[6]
Winterhalter, W., Fleckenstein, F., Steder, B., Spinello, L. and Burgard, W. (2015) Accurate Indoor Localization for RGB-D Smartphones and Tablets Given 2D Floor Plans. 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems, Hamburg, 28 September-2 October 2015, 3138-3143. https://doi.org/10.1109/IROS.2015.7353811
[7]
Thrun, S., Burgard, W. and Fox, D. (2005) Probabilistic Robotics. The MIT Press, Cambridge, MA.
[8]
Durrant-Whyte, H. and Bailey, T. (2006) Simultaneous Localization and Mapping: Part: I. IEEE Robotics & Automation Magazine, 13, 99-110. https://doi.org/10.1109/MRA.2006.1638022
[9]
Bailey, T., Nieto, J., Guivant, J., Stevens, M. and Nebot, E. (2006) Consistency of the EKF-Slam Algorithm. 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, Beijing, 9-15 October 2006, 3562-3568. https://doi.org/10.1109/IROS.2006.281644
[10]
Montemerlo, M., Thrun, S., Koller, D. and Wegbreit, B. (2003) FastSLAM 2.0: An Improved Particle Filtering Algorithm for Simultaneous Localization and Mapping that Provably Converges. Proceedings of International Joint Conference on Artificial Intelligence, Acapulco, 9-15 August 2003, 1151-1156.
[11]
Rekleitis, I., Bedwani, J.-L., Dupuis, E., Lamarche, T. and Allard, P. (2013) Autonomous Over-the-Horizon Navigation Using LIDAR Data. Autonomous Robots, 34, 1-18. https://doi.org/10.1007/s10514-012-9309-9
[12]
Weiss, U. and Biber, P. (2011) Plant Detection and Mapping for Agricultural Robots Using a 3D LIDAR Sensor. Robotics and Autonomous Systems, 59, 265-273. https://doi.org/10.1016/j.robot.2011.02.011
[13]
Raibert, M., Blankespoor, K., Nelson, G. and Playter, R. (2008) BigDog, the Rough-Terrain Quadruped Robot. IFAC Proceedings Volumes, 41, 10822-10825. https://doi.org/10.3182/20080706-5-KR-1001.01833
[14]
Levinson, J., Montemerlo, M. and Thrun, S. (2007) Map-Based Precision Vehicle Localization in Urban Environments. Robotics: Science and Systems, Atlanta, GA, 27-30 June, 2007, 4, 1. https://doi.org/10.15607/RSS.2007.III.016
[15]
Mur-Artal, R., Montiel, J.M.M. and Tardos, J.D. (2015) ORB-SLAM: A Versatile and Accurate Monocular Slam System. IEEE Transactions on Robotics, 31, 1147-1163. https://doi.org/10.1109/TRO.2015.2463671
[16]
Engel, J., Schöps, T. and Cremers, D. (2014) LSD-SLAM: Large-Scale Direct Monocular SLAM. In: Fleet, D., Pajdla, T., Schiele, B. and Tuytelaars, T., Eds., Computer Vision-ECCV 2014. ECCV 2014. Lecture Notes in Computer Science, Vol. 8690. Springer, Cham. https://doi.org/10.1007/978-3-319-10605-2_54
[17]
Naseer, T., Burgard, W. and Stachniss, C. (2018) Robust Visual Localization across Seasons. IEEE Transactions on Robotics, 34, 289-302. https://doi.org/10.1109/TRO.2017.2788045
[18]
Taketomi, T., Uchiyama, H. and Ikeda, S. (2017) Visual SLAM Algorithms: A Survey from 2010 to 2016. IPSJ Transactions on Computer Vision and Applications, 9, 16. https://doi.org/10.1186/s41074-017-0027-2
[19]
Endo, Y., Balloch, J.C., Grushin, A., Lee, M.W. and Handelman, D. (2016) Landmark-Based Robust Navigation for Tactical UGV Control in GPS-Denied Communication-Degraded Environments. Unmanned Systems Technology XVIII, 9837, 98370F. https://doi.org/10.1117/12.2224231
[20]
Agrawal, M. and Konolige, K. (2006) Real-Time Localization in Outdoor Environments Using Stereo Vision and Inexpensive GPS. 18th International Conference on Pattern Recognition (ICPR’06), Hong Kong, 20-24 August 2006, 1063-1068. https://doi.org/10.1109/ICPR.2006.962
[21]
Velázquez, R., Pissaloux, E., Rodrigo, P., Carrasco, M., Giannoccaro, N.I. and Lay-Ekuakille, A. (2018) An Outdoor Navigation System for Blind Pedestrians Using GPS and Tactile-Foot Feedback. Applied Sciences, 8, 578. https://doi.org/10.3390/app8040578
[22]
Scaramuzza, D. Achtelik, M.C., Doitsidis, L., Friedrich, F., Kosmatopoulos, E., Martinelli, A., Achtelik, M.W., Chli, M., Chatzichristofis, S., Kneip, L., et al. (2014) Vision-Controlled Micro Ying Robots: From System Design to Autonomous Navigation and Mapping in GPS-Denied Environments. IEEE Robotics & Automation Magazine, 21, 26-40. https://doi.org/10.1109/MRA.2014.2322295
[23]
Lucas-Esta~n, M., Maestre, J., Coll-Perales, B., Gozalvez, J. and Lluvia, I. (2018) An Experimental Evaluation of Redundancy in Industrial Wireless Communications. 2018 IEEE 23rd International Conference on Emerging Technologies and Factory Automation, Turin, 4-7 September 2018, 1075-1078. https://doi.org/10.1109/ETFA.2018.8502497
[24]
Xu, R., Chen, W., Xu, Y. and Ji, S. (2015) A New Indoor Positioning System Architecture Using GPS Signals. Sensors, 15, 10074-10087. https://doi.org/10.3390/s150510074
[25]
Skomra, S.A. and Durand, J. (2016) Method and Apparatus for a Local Positioning System. US Patent No. 9258797.
[26]
Nadeem, U., Hassan, N., Pasha, M. and Yuen, C. (2014) Highly Accurate 3D Wireless indoor Positioning System Using White Led Lights. Electronics Letters, 50, 828-830. https://doi.org/10.1049/el.2014.0353
[27]
Handa, A., Whelan, T., McDonald, J. and Davison, A.J. (2014) A Benchmark for RGB-D Visual Odometry, 3D Reconstruction and Slam. 2014 IEEE International Conference on Robotics and Automation (ICRA), Hong Kong, 31 May-7 June 2014, 1524-1531. https://doi.org/10.1109/ICRA.2014.6907054
[28]
Tang, J., Chen, Y., Niu, X., Wang, L., Chen, L., Liu, J., Shi, C. and Hyyppä, J. (2015) Lidar Scan Matching Aided Inertial Navigation System in GNSS-Denied Environments. Sensors, 15, 16710-16728. https://doi.org/10.3390/s150716710
[29]
Grisetti, G., Stachniss, C. and Burgard, W. (2007) Improved Techniques for Grid Mapping with Raoblackwellized Particle Filters. IEEE Transactions on Robotics, 23, 34-46. https://doi.org/10.1109/TRO.2006.889486
[30]
Kohlbrecher, S., Meyer, J., von Stryk, O. and Klingauf, U. (2011) A Flexible and Scalable Slam System with Full 3D Motion Estimation. 2011 IEEE International Symposium on Safety, Security and Rescue Robotics, Kyoto, 1-5 November 2011, 155-160. https://doi.org/10.1109/SSRR.2011.6106777
[31]
Hess, W., Kohler, D., Rapp, H. and Andor, D. (2016) Real-Time Loop Closure in 2D Lidar Slam. 2016 IEEE International Conference on Robotics and Automation, Stockholm, 16-21 May 2016, 1271-1278. https://doi.org/10.1109/ICRA.2016.7487258
[32]
Koutecký, T., Paloušek, D. and Brandejs, J. (2013) Method of Photogrammetric Measurement Automation Using Tritop System and Industrial Robot. Optik—International Journal for Light and Electron Optics, 124, 3705-3709. https://doi.org/10.1016/j.ijleo.2012.11.024