全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Determining the Effect Rate of Speed, Volume of Passenger Cars, Heavy Vehicles and Light Non-Passenger Car Vehicles on Likelihood of Accidents on Urban Highways

DOI: 10.4236/ojsst.2019.92004, PP. 37-60

Keywords: Accidents, Urban Highways, Fuzzy Models, Speed, Light Non-Passenger Car Vehicles, Sensitivity Analysis

Full-Text   Cite this paper   Add to My Lib

Abstract:

In this article, the role of speed and volume of traffic on occurrence of accidents on urban highways is investigated using Fuzzy models and the accident data of Tehran urban highways is used as case study. To fuzzify the variables in scatter diagram, the notion of statistical percentiles is used for assigning the linguistic terms. To produce rules in each model, one or more variables are deemed effectively?in occurrence of accidents. The evaluated number of accidents by developed models is compared with the number of observed accidents. The results of comparison represent the accuracy of each model. The model with?the?highest value of?R2?is the best model and the variables deemed effective for that model are those which do play?a?role in occurrence of accidents. Comparing the effect of elements of traffic volume indicates that after the average speed, volume of light non-passenger car vehicles is more effective on occurrence of accidents on urban highways than volume of heavy vehicles and passenger cars. After that the part of volume of heavy vehicles is more prominent than volume of passenger cars in the likelihood of more severe accident. The opposite is true for no injury accidents. After prioritization of variables in terms of influence on occurrence of accidents, the authors employed the models best fitting the data with?the?highest value of goodness of fit to do the sensitivity analyse. Sensitivity analyse specifies the effect rate of each variable on likelihood of accidents.

References

[1]  Chen, S., Chen, F. and Wu, J. (2011) Multi-Scale Traffic Safety and Operational Performance Study of Large Trucks on Mountainous Interstate Highway. Accident Analysis and Prevention, 43, 429-438.
https://doi.org/10.1016/j.aap.2010.09.013
[2]  Ayati, E. and Abbasi, E. (2011) Investigation on the Role of Traffic Volume in Crashes on Urban Highways. Safety Research, 42, 209-214.
https://doi.org/10.1016/j.jsr.2011.03.006
[3]  Kaplan, S. and Prato, C.G. (2012) Risk Factors Associated with Bus Accident Severity in the United States: A Generalized Ordered Logit Model. Journal of Safety Research, 43, 171-180.
https://doi.org/10.1016/j.jsr.2012.05.003
[4]  Chang, L. and Chien, J. (2013) Analysis of Driver Injury Severity in Truck-Involved Crashes Using a Non-Parametric Classification Tree Model. Safety Science, 51, 17-22.
https://doi.org/10.1016/j.ssci.2012.06.017
[5]  Feng, Sh., Zhang, G., et al. (2016) Risk Factors Affecting Fatal Bus Accident Severity: Their Impact on Different Types of Bus Drivers. Accident Analysis and Prevention, 86, 29-39.
https://doi.org/10.1016/j.aap.2015.09.025
[6]  Green, C.P., Heywood, J.S. and Navarro, M. (2016) Traffic Crashes and the London Congestion Charge. Journal of Public Economics, 133, 11-22.
https://doi.org/10.1016/j.jpubeco.2015.10.005
[7]  Castillo-Manzano, J.I., Castro-Nuno, M. and Fageda, X. (2016) Exploring the Relationship between Truck Load Capacity and Traffic Crashes in the European Union. Transportation Research Part E, 88, 94-109.
https://doi.org/10.1016/j.tre.2016.02.003
[8]  Tseng, C.-M., Yeh, M.-S., Tseng, L.-Y., Liu, H.-H. and Lee, M.-C. (2016) A Comprehensive Analysis of Factors Leading to Speeding Offenses among Large-Truck Drivers. Transportation Research Part F, 38, 171-181.
https://doi.org/10.1016/j.trf.2016.02.007
[9]  Cerezoa, V. and Conche, F. (2016) Risk Assessment in Ramps for Heavy Vehicles—A French Study. Accident Analysis and Prevention, 91, 183-189.
https://doi.org/10.1016/j.aap.2016.02.017
[10]  Goh, K., Currie, G., Sarvi, M. and Logan, D. (2014) Factors Affecting the Probability of Bus Drivers Being At-Fault in Bus-Involved Crashes. Accident Analysis and Prevention, 66, 20-26.
https://doi.org/10.1016/j.aap.2013.12.022
[11]  Grytnes, R., Shibuya, H., Dyreborg, J., Gron, S. and Cleal, B. (2016) Too Individualistic for Safety Culture? Non-Traffic Related Work Safety among Heavy Goods Vehicle Drivers. Transportation Research Part F, 40, 145-155.
https://doi.org/10.1016/j.trf.2016.04.012
[12]  Evgenikos, P., Yannis, G., Folla, K., Bauer, R., Machata, K. and Brandstaetter, C. (2016) Characteristics and Causes of Heavy Goods Vehicles and Buses Accidents in Europe. Transportation Research Procedia, 14, 2158-2167.
https://doi.org/10.1016/j.trpro.2016.05.231
[13]  Boyce, W.S. (2016) Does Truck Driver Health and Wellness Deserve More Attention? Journal of Transport & Health, 3, 124-128.
https://doi.org/10.1016/j.jth.2016.02.001
[14]  Zhu, X. and Srinivasan, S. (2011) Modeling Occupant-Level Injury Severity: An Application to Large-Truck Crashes. Accident Analysis and Prevention, 43, 1427-1437.
https://doi.org/10.1016/j.aap.2011.02.021
[15]  Abdelwahab, H. and Abdel-Aty, M. (2004) Investigating the Effect of Light Truck Vehicle Percentages on Head-On Fatal Traffic Crashes. Journal of Transportation Engineering, 130, 429-437.
https://doi.org/10.1061/(ASCE)0733-947X(2004)130:4(429)
[16]  Daniel, J. and Chien, S.I.-J. (2004) Truck Safety Factors on Urban Arterials. Journal of Transportation Engineering, 130, 742-752.
https://doi.org/10.1061/(ASCE)0733-947X(2004)130:6(742)
[17]  Mohamed, N., Mohd-Yusoff, M.-F., Othman, I., Zulkipli, Z.-H., Osman, M.R. and Voon, W.S. (2012) Fatigue-Related Crashes Involving Express Buses in Malaysia: Will the Proposed Policy of Banning the Early-Hour Operation Reduce Fatigue-Related Crashes and Benefit Overall Road Safety? Accident Analysis & Prevention, 45, 45-49.
https://doi.org/10.1016/j.aap.2011.09.025
[18]  Edwards, J.R.D., Davey, J. and Armstrong, A.K. (2014) Profiling Contextual Factors Which Influence Safety in Heavy Vehicle Industries. Accident Analysis and Prevention, 73, 340-350.
https://doi.org/10.1016/j.aap.2014.09.003
[19]  Hosseinpour, M., Yahaya, A.S. and Sadullah, A.F. (2014) Exploring the Effects of Roadway Characteristics on the Frequency and Severity of Head-On Accidents: Case Studies from Malaysian Federal. Accident Analysis and Prevention, 16, 209-222.
https://doi.org/10.1016/j.aap.2013.10.001
[20]  Mussonea, S., Bassanib, M. and Mascib, P. (2017) Analysis of Factors Affecting the Severity of Accidents in Urban Road Intersections. Accident Analysis & Prevention, 103, 112-122.
https://doi.org/10.1016/j.aap.2017.04.007
[21]  Ruslia, R., Haquea, M.M., King, M. and Voon, W.S. (2017) Single-Vehicle Crashes along Rural Mountainous Highways in Malaysia: An Application of Random Parameters Negative Binomial Model. Accident Analysis and Prevention, 102, 153-164.
https://doi.org/10.1016/j.aap.2017.03.002
[22]  Mallia, L., Lazuras, L., Violani, C. and Lucidi, F. (2015) Crash Risk and Aberrant Driving Behaviors among Bus Drivers: The Role of Personality and Attitudes towards Traffic Safety. Accident Analysis and Prevention, 79, 145-151.
https://doi.org/10.1016/j.aap.2015.03.034
[23]  Fowles, R., Loeb, P.D. and Clarke, W. (2013) The Cell Phone Effect on Truck Crashes: A Specification Error Approach. Transportation Research Part E, 50, 18-28.
https://doi.org/10.1016/j.tre.2012.10.002
[24]  Chen, G.X., Fang, Y., Guo, F. and Hanowski, R.J. (2016) The Influence of Daily Sleep Patterns of Commercial Truck Drivers Ondriving Performance. Accident Analysis and Prevention, 91, 55-63.
https://doi.org/10.1016/j.aap.2016.02.027
[25]  Najafi, Sh., Flintsch, G.W. and Khaleghian, S. (2016) Fuzzy Logic Inference-Based Pavement Friction Management and Real-Time Slippery Warning Systems: A Proof of Concept Study. Accident Analysis and Prevention, 90, 41-49.
https://doi.org/10.1016/j.aap.2016.02.007
[26]  Traffic and Transportation Organization of Tehran Municipality, Iran (2014) Comprehensive Studies of Transportation Office. Forth Statistical Paper of Transportation of Tehran.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133