Do Near-Solar-System Supernovae Enhance Volcanic Activities on Earth and Neighbouring Planets on Their Paths through the Spiral Arms of the Milky Way, and What Might Be the Consequences for Estimations of Earth’s History and Predictions for Its Future?
Recent observations of young volcanism on the near-Earth terrestrial planets require a new understanding. Magmatic/volcanic episodes on Venus, Mars and Mercury, as well as on Earth’s Moon, are apparently contemporaneous thermal events that accompanied increased magmatic/volcanic activity on Earth, following a 300-Myr cycle. A collateral galactic thermal source in the Milky Way appears to be needed that would predominantly affect the interior of the planets and, perhaps indirectly, Earth’s biosphere, compared to other galactic sources, such as intense cosmic rays or large, rocky bolides. The search for such a source leads to near-Earth supernovae, with their neutrino output, and to the question of whether those neutrinos could act as energy transmitters to heat up the body of Earth, and also enhance its short-term magmatic processes; for example, Cenozoic anorogenic volcanism. This observation challenges present assumptions and paradigms about Earth’s history, and requires the following reconsiderations: 1) the real origin of the end-Cretaceous mass extinction; 2) the general radioactive age determinations of rocks; and 3) geodynamic modelling using additional, external heat sources.
References
[1]
Brink, H.-J. (2006) Do the Global Geodynamic Cycles of the Phanerozoic Represent a Feedback System of the Earth and Is the Moon Involved as an Acting External Force? Zeitschrift der Deutschen Gesellschaft für Geowissenschaften—German Journal of Geology, 157, 17-40. https://doi.org/10.1127/1860-1804/2006/0157-0017
[2]
Brink, H.-J. (2009) Mantle Plumes and the Metamorphism of the Lower Crust and Their Influence on Basin Evolution. Marine and Petroleum Geology, 26, 606-614. https://doi.org/10.1016/j.marpetgeo.2009.02.002
[3]
Brink, H.-J. (2012) Flood Basalts, Mantle Plumes and Asteroid Impacts. In: West, J.P., Ed., Basalt: Types, Petrology and Uses, Nova Science Publishers, Hauppauge, 1-32.
[4]
Brink, H.J. (2015) Periodic Signals of the Milky Way Concealed in Terrestrial Sedimentary Basin Fills and in Planetary Magmatism? International Journal of Geosciences, 6, 831-845. https://doi.org/10.4236/ijg.2015.68067
[5]
Shaviv, N.J. and Veizer, J. (2003) Celestial Driver of Phanerozoic Climate? GSA Today, 13, 4-10. https://doi.org/10.1130/1052-5173(2003)013<0004:CDOPC>2.0.CO;2
[6]
Engel, A.E.J. and Engel, C.G. (1964) Continental Accretion and the Evolution of North America. In: Subramaniam, A.P. and Balakrishna, S., Eds., Advancing Frontiers in Geology and Geophysics, Indian Geophysical Union, Hyderabad, 17-37.
[7]
Gastil, G. (1960) The Distribution of Mineral Dates in Time and Space. American Journal of Science, 258, 1-35. https://doi.org/10.2475/ajs.258.1.1
[8]
Hartmann, W.K. and Neukum, G. (2001) Cratering Chronology and the Evolution of Mars. Space Science Reviews, 96, 165-194. https://doi.org/10.1023/A:1011945222010
[9]
Werner, S.C. (2009) The Global Martian Volcanic Evolutionary History. Icarus, 20, 44-68. https://doi.org/10.1016/j.icarus.2008.12.019
[10]
Robbins, S.J., Di Achille, G. and Hynek, B.M. (2011) The Volcanic History of Mars: High-Resolution Crater-Based Studies of the Calderas of 20 Volcanoes. Icarus, 211, 1179-1203. https://doi.org/10.1016/j.icarus.2010.11.012
[11]
Basilevsky, A.T. and Head, J.W. (2002) Venus: Analysis of the Degree of Impact Crater Deposit Degradation and Assessment of Its Use for Dating Geological Units and Features. Journal of Geophysical Research, 107, 5-1-5-38. https://doi.org/10.1029/2001JE001584
[12]
Thomas, R.J., Rothery, D.A., Conway, S.J. and Anand, M. (2014) Long-Lived Explosive Volcanism on Mercury. Geophysical Research Letters, 41, 6084-6092. https://doi.org/10.1002/2014GL061224
[13]
Thomas, R.J., Rothery, D.A., Conway, S.J. and Anand, M. (2015) The Timing and Distribution of Pyroclastic Volcanism on Mercury. The Open University, Milton Keynes.
[14]
Braden, S.E., Stopar, J.D., Robinson, M.S., Lawrence, S.J., van der Bogert, C.H. and Hiesinger, H. (2014) Evidence for Basaltic Volcanism on the Moon within the Past 100 Million Years. Nature Geoscience, 7, 787-791. https://doi.org/10.1038/ngeo2252
[15]
Zhao, J.K., Luo, A.L., Oswalt, T.D. and Zhao, G. (2013) 70 DA White Dwarfs Identified in Lamost Pilot Study. The Astronomical Journal, 145, 169. https://doi.org/10.1088/0004-6256/145/6/169
[16]
Sion, E.M., Holberg, J.B., Oswalt, T.D., McCook, G.P., Wasatonic, R. and Myszka, J. (2014) The White Dwarfs within 25 pc of the Sun: Kinematics and Spectroscopic Subtypes. The Astronomical Journal, 147, 129. https://doi.org/10.1088/0004-6256/147/6/129
[17]
Tremblay, P.-E., Kalirai, J.S., Soderblom, D.R., Cignoni, M. and Cummings, J. (2014) White Dwarf Cosmochronology in the Solar Neighborhood. The Astrophysical Journal, 791, Article ID: 92. https://doi.org/10.1088/0004-637X/791/2/92
[18]
Torres, S. and García-Berro, E. (2016) The White Dwarf Population within 40 pc of the Sun. A&A, 588, A35. https://doi.org/10.1051/0004-6361/201528059
[19]
Gillman, M.P., Erenler, H.E. and Sutton, P.J. (2018) Mapping the Location of Terrestrial Impacts and Extinctions onto the Spiral Arm Structure of the Milky Way. International Journal of Astrobiology, 10, 1-6. https://doi.org/10.1017/S1473550418000125
[20]
Mjelde, R., Wessel, P. and Müller, R.D. (2010) Global Pulsations of Intraplate Magmatism through the Cenozoic. Geological Society of America, Lithosphere, 2, 361-376. https://doi.org/10.1130/L107.1
[21]
Brink, H.-J. (2011) The Crustal Structure around the Harz Mountains (Germany): Review and Analysis. Zeitschrift der Deutschen Gesellschaft für Geowissenschaften, 162, 235-250. https://doi.org/10.1127/1860-1804/2011/0162-0235
[22]
Formaggio, J.A. (2013) From eV to EeV: Neutrino Cross-Sections across Energy Scales.
[23]
Wei, Y. (2017) Converged Solar Neutrinos Heat Outer Core of Earth to Liquid. Working Paper, Kiwaho Laboratory of Energy and Ecology Inc., Ontario. https://www.researchgate.net/publication/316602230
[24]
Paar, N., Suzuki, T, Honma, M., Marketin, T. and Vretenar, D. (2011) Uncertainties in Modeling Low-Energy Neutrino-Induced Reactions on Iron-Group Nuclei. Physical Review C, 84, Article ID: 047305. https://doi.org/10.1103/PhysRevC.84.047305
[25]
Renshaw, A., Abe, K., Hayato, Y., Iyogi, K., Kameda, J., Kishimoto, Y., Miura, M., Moriyama, S., Nakahata, M., Nakano, Y., Nakayama, S., Sekiya, H., Shiozawa, M., Suzuki, Y., Takeda, A., Takenaga, Y., Tomura, T., Ueno, K., Yokozawa, T., Wendell, R.A., Irvine, T., Kajita, T., Kaneyuki, K., Lee, K.P., Nishimura, Y., Okumura, K., McLachlan, T., Labarga, L., Berkman, S., Tanaka, H.A., Tobayama, S., Kearns, E., Raaf, J.L., Stone, J.L., Sulak, L.R., Goldhabar, M., Bays, K., Carminati, G., Kropp, W.R., Mine, S., Smy, M.B., Sobel, H.W., Ganezer, K.S., Hill, J., Keig, W.E., Hong, N., Kim, J.Y., Lim, I.T., Akiri, T., Himmel, A., Scholberg, K., Walter, C.W., Wongjirad, T., Ishizuka, T., Tasaka, S., Jang, J.S., Learned, J.G., Matsuno, S., Smith, S.N., Hasegawa, T., Ishida, T., Ishii, T., Kobayashi, T., Nakadaira, T., Nakamura, K., Oyama, Y., Sakashita, K., Sekiguchi, T., Tsukamoto, T., Suzuki, A.T., Takeuchi, Y., Bronner, C., Hirota, S., Huang, K., Ieki, K., Ikeda, M., Kikawa, T., Minamino, A., Nakaya, T., Suzuki, K., Takahashi, S., Fukuda, Y., Choi, K., Itow, Y., Mitsuka, G., Mijakowski, P., Hignight, J., Imber, J., Jung, C.K., Yanagisawa, C., Ishino, H., Kibayashi, A., Koshio, Y., Mori, T., Sakuda, M., Yano, T., Kuno, Y., Tacik, R., Kim, S.B., Okazawa, H., Choi, Y., Nishijima, K., Koshiba, M., Totsuka, Y., Yokoyama, M., Martens, K., Marti, Ll., Vagins, M.R., Martin, J.F., de Perio, P., Konaka, A., Wilking, M.J., Chen, S., Zhang, Y. and Wilkes, R.J. (2014) First Indication of Terrestrial Matter Effects on Solar Neutrino Oscillation. Physical Review Letters, 112, Article ID: 091805. https://doi.org/10.1103/PhysRevLett.112.091805
[26]
Khavroshkin, O.B. and Tsyplakov, V.V. (2016) The Radioactivity of Nuclei & Solar Oscillations: New Experiments. Natural Science, 8, 20-32. https://doi.org/10.4236/ns.2016.81003
[27]
Bandyopadhyay, A., Bhattacharjee, P., Chakraborty, S., Kar, K. and Saha, S. (2017) Detecting Supernova Neutrinos with Iron and Lead Detectors. Physical Review D, 95, Article ID: 065022. https://doi.org/10.1103/PhysRevD.95.065022
[28]
Wallner, A., Feige, J., Kinoshita, N., Paul, M., Fifield, L.K., Golser, R., Honda, M., Linnemann, U., Matsuzaki, H., Merche, S., Rugel, G., Tims, S.G., Steier, P., Yamagata, T. and Winkler, S.R. (2016) Recent Near-Earth Supernovae Probed by Global Deposition of Interstellar Radioactive 60Fe. Nature, 532, 69-72. https://doi.org/10.1038/nature17196
[29]
White, R.V. and Saunders, A.D. (2005) Volcanism, Impact and Mass Extinctions: Incredible or Credible Coincidences? Lithos, 79, 299-316. https://doi.org/10.1016/j.lithos.2004.09.016
[30]
Rampino, M.R. and Caldeira, K. (2015) Periodic Impact Cratering and Extinction Events over the Last 260 Million Years. Monthly Notices of the Royal Astronomical Society, 454, 3480-3484. https://doi.org/10.1093/mnras/stv2088
[31]
Alvarez, L.W., Alvarez, W., Asaro, F. and Michel, H.V. (1980) Extraterrestrial Cause for the Cretaceous-Tertiary Extinction. Science, 208, 1095-1108. https://doi.org/10.1126/science.208.4448.1095
[32]
Wallner, A., Faestermann, T., Feige, J., Feldstein, C., Knie, K., Korschinek, G., Kutschera, W., Ofan, A., Paul, M., Quinto, F., Rugel, G. and Steier, P. (2015) Abundance of Live 244 Pu in Deep-Sea Reservoirs on Earth Points to Rarity of Actinide Nucleosynthesis. Nature Communications, 6, Article No. 5956. https://doi.org/10.1038/ncomms6956
[33]
Svensmark, H. (2012) Evidence of Nearby Supernovae Affecting Life on Earth. Monthly Notices of the Royal Astronomical Society, 423, 1234-1253. https://doi.org/10.1111/j.1365-2966.2012.20953.x
[34]
Korschinek, G. (2016) Mass Extinctions and Supernova Explosions. In: Murdin, P. and Alsabeti, A., Eds., Handbook of Supernovae, Springer International Publishing, Berlin, 1-12. https://arxiv.org/ftp/arxiv/papers/1609/1609.02817.pdf https://doi.org/10.1007/978-3-319-20794-0_22-1
[35]
LaViolette, P.A. (2009) The Cause of the Megafaunal Extinction: Supernova or Galactic Core Outburst? (Twenty-Two Problems with the Firestone-West Supernova Comet Theory). The Starburst Foundation, Schenectady. http://starburstfound.org/YDextinct/p1.html
[36]
Lovelock, J. (2000) Gaia: A New Look at Life on Earth. 3rd Edition, Oxford University Press, Oxford.