全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Tables of Pure Quintic Fields

DOI: 10.4236/apm.2019.94017, PP. 347-403

Keywords: Pure Quintic Fields, Pure Metacyclic Fields, Units, Galois Cohomology, Differential Principal Factorization Types, Similarity Classes, Prototypes, Class Group Structure

Full-Text   Cite this paper   Add to My Lib

Abstract:

By making use of our generalization of Barrucand and Cohn’s theory of principal factorizations in pure cubic fields \"\" and their Galois closures \"\" with 3 possible types to pure quintic fields \"\" and their pure metacyclic normal fields \"\" with 13 possible types, we compile an extensive database with arithmetical invariants of the 900 pairwise non-isomorphic fields N having normalized radicands in the range 2≤D<103. Our classification is based on the Galois cohomology of the unit group UN, viewed as a module over the automorphism group Gal(N/K) of N over the cyclotomic field K=Q(ξ5), by employing theorems of Hasse and Iwasawa on the Herbrand quotient of the unit norm index (Uk:NN/K(UN)) by the number #(PN/K/PK) of primitive ambiguous principal ideals, which can be interpreted as principal factors of the different DN/K. The precise structure of the F5-vector space of differential principal factors is expressed in terms of norm kernels and central orthogonal idempotents. A connection with integral representation theory is established via class number relations by Parry and Walter involving the index of subfield units (UN:U0)

References

[1]  Parry, C.J. (1975) Class Number Relations in Pure Quintic Fields. Symposia Mathematica, 15, 475-485.
[2]  PARI Developer Group (2018) PARI/GP, Version 64 bit 2.11.1, Bordeaux.
http://pari.math.u-bordeaux.fr
[3]  Bosma, W., Cannon, J. and Playoust, C. (1997) The Magma Algebra System. I. The User Language. Journal of Symbolic Computation, 24, 235-265.
https://doi.org/10.1006/jsco.1996.0125
[4]  Bosma, W., Cannon, J.J., Fieker, C. and Steels, A., Eds. (2018) Handbook of Magma functions. Edition 2.24, Sydney.
[5]  MAGMA Developer Group (2018) MAGMA Computational Algebra System. Version 2.24-3, Sydney.
http://magma.maths.usyd.edu.au
[6]  Mayer, D.C. (2018) Differential Principal Factors and Polya Property of Pure Metacyclic Fields. Accepted by Int. J. Number Theory. arXiv:1812.02436v1 [math.NT]
[7]  Mayer, D.C. (2018) Similarity Classes and Prototypes of Pure Metacyclic Fields. Preprint.
[8]  Mayer, D.C. (2018) Homogeneous Multiplets of Pure Metacyclic Fields. Preprint.
[9]  Mayer, D.C. (2018) Coarse Cohomology Types of Pure Metacyclic Fields. arXiv:1812.09854v1 [math.NT]
[10]  Barrucand, P. and Cohn, H. (1970) A Rational Genus, Class Number Divisibility, and Unit Theory for Pure Cubic Fields. Journal of Number Theory, 2, 7-21.
https://doi.org/10.1016/0022-314X(70)90003-X
[11]  Barrucand, P. and Cohn, H. (1971) Remarks on Principal Factors in a Relative Cubic Field. Journal of Number Theory, 3, 226-239.
https://doi.org/10.1016/0022-314X(71)90040-0
[12]  Mayer, D.C. (1991) Classification of Dihedral Fields. Preprint, Department of Computer Science, University of Manitoba, Manitoba.
[13]  Mayer, D.C. (1993) Discriminants of Metacyclic Fields. Canadian Mathematical Bulletin, 36, 103-107.
https://doi.org/10.4153/CMB-1993-015-x
[14]  Kobayashi, H. (2016) Class Numbers of Pure Quintic Fields. Journal of Number Theory, 160, 463-477.
https://doi.org/10.1016/j.jnt.2015.09.017
[15]  Kobayashi, H. (2016) Class Numbers of Pure Quintic Fields. Ph.D. Thesis, Osaka University Knowledge Archive (OUKA).
[16]  Aouissi, S., Mayer, D.C., Ismaili, M.C., Talbi, M. and Azizi, A. (2018) 3-Rank of Ambiguous Class Groups in Cubic Kummer Extensions. arXiv:1804.00767v4 [math.NT]
[17]  Aouissi, S., Mayer, D.C. and Ismaili, M.C. (2018) Structure of Relative Genus Fields of Cubic Kummer Extensions. arXiv:1808.04678v1 [math.NT]
[18]  Iimura, K. (1977) A Criterion for the Class Number of a Pure Quintic Field to Be Divisible by 5. Journal für die Reine und Angewandte Mathematik, 292, 201-210.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133