全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Nanobiotechnology in Agricultural Sector: Overview and Novel Applications

DOI: 10.4236/jbnb.2019.102007, PP. 120-141

Keywords: Component, Nanotechnology, Biotechnology, Agriculture, Nanobiotechnology

Full-Text   Cite this paper   Add to My Lib

Abstract:

The agricultural sector has many problems achieving the desired yield in products because of pathogens, viruses, pesticides, herbicides, temperature, soil moisture, among others. Nanotechnology, along with other sciences, has emerged in industry and society due to the interest in solving problems such as those mentioned above, in order to serve the needs of the world population. The present review discusses the principal topics about Nanobiotechnology, such as generalities, applications, aspects that can be improved and perspectives, beside its influence in the agriculture industry.

References

[1]  Ali, M.A., Rehman, I., Iqbal, A., Din, S., Rao, A.Q., Latif, A., et al. (2014) Nanotechnology, a New Frontier in Agriculture. Advancements in Life Sciences, 1, 129-138.
[2]  Parisi, C., Vigani, M. and Rodríguez-Cerezo, E. (2015) Agricultural Nanotechnologies: What Are the Current Possibilities? Nano Today, 10, 124-127.
https://doi.org/10.1016/j.nantod.2014.09.009
[3]  Bhagat, Y., Gangadhara, K., Rabinal, C., Chaudhari, G. and Ugale, P. (2015) Nanotechnology in Agriculture: A Review. Journal of Pure and Applied Microbiology, 9, 737-747.
[4]  Sharon, M., Choudhary, A.K. and Kumar, R. (2010) Nanotechnology in Agricultural Diseases and Food Safety. Journal of Phytology, 2, 83-92.
[5]  Prasad, R., Kumar, V. and Prasad, K.S. (2014) Nanotechnology in Sustainable Agriculture: Present Concerns and Future Aspects. African Journal of Biotechnology, 13, 705-713.
https://doi.org/10.5897/AJBX2013.13554
[6]  Rai, M. and Ingle, A. (2012) Role of Nanotechnology in Agriculture with Special Reference to Management of Insect Pests. Applied Microbiology and Biotechnology, 94, 287-293.
https://doi.org/10.1007/s00253-012-3969-4
[7]  Agrawal, S. and Rathore, P. (2014) Nanotechnology Pros and Cons to Agriculture: A Review. International Journal of Current Microbiology and Applied Sciences, 3, 43-55.
[8]  Servin, A.D. and White, J.C. (2016) Nanotechnology in Agriculture: Next Steps for Understanding Engineered Nanoparticle Exposure and Risk. NanoImpact, 1, 9-12.
https://doi.org/10.1016/j.impact.2015.12.002
[9]  Schaming, D. and Remita, H. (2015) Nanotechnology: From the Ancient Time to Nowadays. Foundations of Chemistry, 17, 187-205.
https://doi.org/10.1007/s10698-015-9235-y
[10]  Mukhopadhyay, S.S. (2014) Nanotechnology in Agriculture: Prospects and Constraints. Nanotechnology, Science and Applications, 7, 63.
https://doi.org/10.2147/NSA.S39409
[11]  Nations, U. (2015) World Population Prospects: The 2015 Revision. United Nations Department of Economic and Social Affairs, 33, 1-66.
[12]  Bramhanwade, K., Shende, S., Bonde, S., Gade, A. and Rai, M. (2016) Fungicidal Activity of Cu Nanoparticles against Fusarium Causing Crop Diseases. Environmental Chemistry Letters, 14, 229-235.
https://doi.org/10.1007/s10311-015-0543-1
[13]  Chhipa, H. (2017) Nanofertilizers and Nanopesticides for Agriculture. Environmental Chemistry Letters, 15, 15-22.
https://doi.org/10.1007/s10311-016-0600-4
[14]  Pandey, S., Giri, K., Kumar, R., Mishra, G. and Rishi, R.R. (2018) Nanopesticides: Opportunities in Crop Protection and Associated Environmental Risks. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences, 88, 1287-1308.
[15]  Khot, L.R., Sankaran, S., Maja, J.M., Ehsani, R. and Schuster, E.W. (2012) Applications of Nanomaterials in Agricultural Production and Crop Protection: A Review. Crop Protection, 35, 64-70.
https://doi.org/10.1016/j.cropro.2012.01.007
[16]  Ghormade, V., Deshpande, M.V. and Paknikar, K.M. (2011) Perspectives for Nano-Biotechnology Enabled Protection and Nutrition of Plants. Biotechnology Advances, 29, 792-803.
https://doi.org/10.1016/j.biotechadv.2011.06.007
[17]  Shukla, S.K., Kumar, R., Mishra, R.K., Pandey, A., Pathak, A., Zaidi, M.G.H., Dikshit, A., et al. (2015) Prediction and Validation of Gold Nanoparticles (GNPs) on Plant Growth Promoting Rhizobacteria (PGPR): A Step toward Development of Nano-Biofertilizers. Nanotechnology Reviews, 4, 439-448.
https://doi.org/10.1515/ntrev-2015-0036
[18]  Liu, R. and Lal, R. (2015) Potentials of Engineered Nanoparticles as Fertilizers for Increasing Agronomic Productions. Science of the Total Environment, 514, 131-139.
https://doi.org/10.1016/j.scitotenv.2015.01.104
[19]  Ragaei, M. and Sabry, A.K.H. (2014) Nanotechnology for Insect Pest Control. International Journal of Science, Environment and Technology, 3, 528-545.
[20]  Mousavi, S.R. and Rezaei, M. (2011) Nanotechnology in Agriculture and Food Production. Journal of Applied Environmental and Biological Sciences, 1, 414-419.
[21]  Madhuban, G., Rajesh, K. and Arunava, G. (2012) Nano-Pesticides—A Recent Approach for Pest Control. The Journal of Plant Protection Sciences, 4, 1-7.
[22]  Sheykhbaglou, R., Sedghi, M., Shishevan, M.T. and Sharifi, R.S. (2010) Effects of Nano-Iron Oxide Particles on Agronomic Traits of Soybean. Notulae Scientia Biologicae, 2, 112-113.
https://doi.org/10.15835/nsb224667
[23]  Norman, S. and Hongda, C. (2013) IB in Depth Special Section on Nanobiotechnology, Part 1. Industrial Biotechnology, 9, 17-18.
[24]  Nejad, M.S., Bonjar, G.H.S., Khatami, M., Amini, A. and Aghighi, S. (2016) In Vitro and in Vivo Antifungal Properties of Silver Nanoparticles against Rhizoctonia solani, a Common Agent of Rice Sheath Blight Disease. IET Nanobiotechnology, 11, 236-240.
https://doi.org/10.1049/iet-nbt.2015.0121
[25]  Sidhu, A., Barmota, H. and Bala, A. (2017) Antifungal Evaluation Studies of Copper Sulfide Nano-Aquaformulations and Its Impact on Seed Quality of Rice (Oryzae sativa). Applied Nanoscience, 7, 681-689.
https://doi.org/10.1007/s13204-017-0606-7
[26]  Ngo, Q.B., Dao, T.H., Nguyen, H.C., Tran, X.T., Van Nguyen, T., Khuu, T.D. and Huynh, T.H. (2014) Effects of Nanocrystalline Powders (Fe, Co and Cu) on the Germination, Growth, Crop Yield and Product Quality of Soybean (Vietnamese Species DT-51). Advances in Natural Sciences: Nanoscience and Nanotechnology, 5, Article ID: 015016.
https://doi.org/10.1088/2043-6262/5/1/015016
[27]  Asghari, F., Jahanshiri, Z., Imani, M., Shams-Ghahfarokhi, M. and Razzaghi-Abyaneh, M. (2016) Antifungal Nanomaterials: Synthesis, Properties, and Applications. In: Grumezescu, A.M., Ed., Nanobiomaterials in Antimicrobial Therapy, Elsevier, Amsterdam, 343-383.
https://doi.org/10.1016/B978-0-323-42864-4.00010-5
[28]  Bardos, P., Merly, C., Kvapil, P. and Koschitzky, H.P. (2018) Status of Nanoremediation and Its Potential for Future Deployment: Risk-Benefit and Benchmarking Appraisals. Remediation Journal, 28, 43-56.
https://doi.org/10.1002/rem.21559
[29]  Seok Kim, Y., Ahmad Raston, N.H. and Bock Gu, M. (2016) Aptamer-Based Nanobiosensors. Biosensors and Bioelectronics, 76, 2-19.
https://doi.org/10.1016/j.bios.2015.06.040
[30]  Cicek, S. and Nadaroglu, H. (2015) The Use of Nanotechnology in the Agriculture. Advanced Nano Research, 3, 207-223.
https://doi.org/10.12989/anr.2015.3.4.207
[31]  Rai, V., Acharya, S. and Dey, N. (2012) Implications of Nanobiosensors in Agriculture. Journal of Biomaterials and Nanobiotechnology, 3, 315.
https://doi.org/10.4236/jbnb.2012.322039
[32]  Baruah, S. and Dutta, J. (2009) Nanotechnology Applications in Pollution Sensing and Degradation in Agriculture: A Review. Environmental Chemistry Letters, 7, 191-204.
https://doi.org/10.1007/s10311-009-0228-8
[33]  Erickson, D., Mandal, S., Yang, A.H.J. and Cordovez, B. (2007) Nanobiosensors: Optofluidic, Electrical and Mechanical Approaches to Biomolecular Detection at the Nanoscale. Microfluidics and Nanofluidics, 4, 33-52.
https://doi.org/10.1007/s10404-007-0198-8
[34]  Kwak, S.-Y., Wong, M.H., Lew, T.T.S., Bisker, G., Lee, M.A., Kaplan, A., Strano, M.S., et al. (2017) Nanosensor Technology Applied to Living Plant Systems. Annual Review of Analytical Chemistry, 10, 113-140.
https://doi.org/10.1146/annurev-anchem-061516-045310
[35]  Sarmast, M.K. and Salehi, H. (2016) Silver Nanoparticles: An Influential Element in Plant Nanobiotechnology. Molecular Biotechnology, 58, 441-449.
https://doi.org/10.1007/s12033-016-9943-0
[36]  Dasgupta, N., Ranjan, S. and Ramalingam, C. (2017) Applications of Nanotechnology in Agriculture and Water Quality Management. Environmental Chemistry Letters, 15, 591-605.
https://doi.org/10.1007/s10311-017-0648-9
[37]  Dhingra, H.K., Jha, P.N. and Bajpai, M.P. (2011) Current Topics in Biotechnology and Microbiology. Lambert Academic Publishing, Saarbrücken.
[38]  Serag, M.F., Kaji, N., Habuchi, S., Bianco, A. and Baba, Y. (2013) Nanobiotechnology Meets Plant Cell Biology: Carbon Nanotubes as Organelle Targeting Nanocarriers. RSC Advances, 3, 4856-4862.
https://doi.org/10.1039/c2ra22766e
[39]  Vijayalakshmi, C., Chellaram, C. and Kumar, S.L. (2015) Modern Approaches of Nanotechnology in Agriculture—A Review. Biosciences Biotechnology Research Asia, 12, 327-331.
https://doi.org/10.13005/bbra/1669
[40]  Abd-Elrahman, S.H. and Mostafa, M.A.M. (2015) Applications of Nanotechnology in Agriculture: An Overview. Egyptian Journal of Soil Science, 55, 197-214.
https://doi.org/10.21608/ejss.2015.324
[41]  Scott, N. and Chen, H. (2013) Nanoscale Science and Engineering for Agriculture and Food Systems. Industrial Biotechnology, 9, 17-18.
https://doi.org/10.1089/ind.2013.1555
[42]  Bai, H. and Liu, X. (2015) Food Nanotechnology and Nano Food Safety. Nanotechnology Materials and Devices Conference, Anchorage Alaska, 13-16 September 2015, 1-4.
https://doi.org/10.1109/NMDC.2015.7439261
[43]  Flores-López, M.L., Cerqueira, M.A., de Rodríguez, D.J. and Vicente, A.A. (2016) Perspectives on Utilization of Edible Coatings and Nano-Laminate Coatings for Extension of Postharvest Storage of Fruits and Vegetables. Food Engineering Reviews, 8, 292-305.
https://doi.org/10.1007/s12393-015-9135-x
[44]  Ramos, O.L., Pereira, R.N., Rodrigues, R., Teixeira, J.A., Vicente, A.A. and Malcata, F.X. (2014) Physical Effects upon Whey Protein Aggregation for Nano-Coating Production. Food Research International, 66, 344-355.
https://doi.org/10.1016/j.foodres.2014.09.036
[45]  Misra, A.N., Misra, M. and Singh, R. (2013) Nanotechnology in Agriculture and Food Industry. International Journal of Pure and Applied Sciences and Technology, 16, 1.
[46]  Chaudhry, Q. and Castle, L. (2011) Food Applications of Nanotechnologies: An Overview of Opportunities and Challenges for Developing Countries. Trends in Food Science & Technology, 22, 595-603.
https://doi.org/10.1016/j.tifs.2011.01.001
[47]  Magnuson, B.A., Jonaitis, T.S. and Card, J.W. (2011) A Brief Review of the Occurrence, Use, and Safety of Food-Related Nanomaterials. Journal of Food Science, 76, R126-R133.
https://doi.org/10.1111/j.1750-3841.2011.02170.x
[48]  Sun, S., Sidhu, V., Rong, Y. and Zheng, Y. (2018) Pesticide Pollution in Agricultural Soils and Sustainable Remediation Methods: A Review. Current Pollution Reports, 1-11.
https://doi.org/10.1007/s40726-018-0092-x
[49]  Gomes, H.I., Fan, G., Mateus, E.P., Dias-Ferreira, C. and Ribeiro, A.B. (2014) Assessment of Combined Electro-Nanoremediation of Molinate Contaminated Soil. Science of the Total Environment, 493, 178-184.
https://doi.org/10.1016/j.scitotenv.2014.05.112
[50]  Gil-Díaz, M., Diez-Pascual, S., González, A., Alonso, J., Rodríguez-Valdés, E., Gallego, J.R. and Lobo, M.C. (2016) A Nanoremediation Strategy for the Recovery of an As-Polluted Soil. Chemosphere, 149, 137-145.
https://doi.org/10.1016/j.chemosphere.2016.01.106
[51]  Mueller, N.C. and Nowack, B. (2010) Nanoparticles for Remediation: Solving Big Problems with Little Particles. Elements, 6, 395-400.
https://doi.org/10.2113/gselements.6.6.395
[52]  Adeleye, A.S., Keller, A.A., Miller, R.J. and Lenihan, H.S. (2013) Persistence of Commercial Nanoscaled Zero-Valent Iron (nZVI) and By-Products. Journal of Nanoparticle Research, 15, 1418.
https://doi.org/10.1007/s11051-013-1418-7
[53]  Gil-Díaz, M., Gonzalez, A., Alonso, J. and Lobo, M.C. (2016) Evaluation of the Stability of a Nanoremediation Strategy Using Barley Plants. Journal of Environmental Management, 165, 150-158.
https://doi.org/10.1016/j.jenvman.2015.09.032
[54]  Maine, E., Thomas, V.J., Bliemel, M., Murira, A. and Utterback, J. (2014) The Emergence of the Nanobiotechnology Industry. Nature Nanotechnology, 9, 2.
https://doi.org/10.1038/nnano.2013.288
[55]  Donaldson, K., Stone, V., Tran, C.L., Kreyling, W. and Borm, P.J. (2004) Nanotoxicology. Occupational and Environmental Medicine, 61, 727-728.
[56]  Bennett, D.J. and Schuurbiers, D. (2005) Nanobiotechnology: Responsible Actions on Issues in Society and Ethics. NSTI Nanotech, Vol. 2, 765-768.
[57]  Lu, C.M., et al. (2002) Research on the Effect of Nanometer Materials on Germination and Growth Enhancement of Glycine Max and Its Mechanism. Soybean Science, 21, 168-171.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133