This study reports the preparation and characterization of silver nanoparticles synthesized by the mediation of the plant weed Stachytarpheta cayennensis through solution method. Ultraviolet visible spectroscopy (UV-Vis) determines the presence of nanoparticles in the solution. Infrared spectroscopy (IR) proves organic molecules at the particles interface. Powder X-ray diffraction (PXRD) provides phase composition and crystallinity. Shape was showed by scanning electron microscopy (SEM), and energy dispersive X-ray spectroscopy (EDX) demonstrated the elemental mapping of the silver nanoparticles. Hydrogen peroxide scavenging and phosphomolybdenum antioxidant assays, egg albumin denaturation anti-inflammation study, and the formation mechanism complete the study. The particles have been found composed of pure silver Ag and silver chloride AgCl nanocrystallites. The average crystallite sizes were found to be 13 nm and 20 nm for Ag and AgCl respectively. A Rietveld refinement based XRD pattern data followed by Williamson-Hall plot allows a size and strain analysis. Based on SEM, spherical agglomerates materials were formed and EDX proved the presence of Cl- ions. The reaction formation mechanism of Ag and AgCl is proposed to be simultaneous and competitive. The silver nanoparticles moderately inhibit the denaturation of egg albumin and exhibit antioxidant action; hence, the nanoparticles could be considered as a potential source for biomedical applications.
References
[1]
Calcott, P.D.J., Nash, K.J., Canham, L.T., Kane, M.J. and Brumhead, D. (1993) Identification of Radiative Transitions in Highly Porous Silicon. Journal of Physics: Condensed Matter, 5, L91. https://doi.org/10.1088/0953-8984/5/7/003
[2]
Beriso, A. and Ghoshal, S.K. (2018) Study of Dependence of Optical Parameters on the Size of Nanoporous Silicon Quantum Dot through Energy Gap. Advances in Physics Theories and Applications, 72, 8-19.
[3]
Shanker, U., Jassal, V., Rani, M. and Kaith, B.S. (2016) Towards Green Synthesis of Nanoparticles: From Bio-Assisted Sources to Benign Solvents. A Review. International Journal of Environmental and Analytical Chemistry, 96, 801-835.
[4]
Pandiarajan, J., Balaji, S., Mahendran, S., Ponmanickam, P. and Krishnan, M. (1996) Synthesis and Toxicity of Silver Nanoparticles. In: Ranjan, S., et al., Eds., Nanosciences in Food and Agriculture 3, Springer International Publishing, Switzerland, 73-98.
[5]
Silva, L.P., Reis, I.G. and Bonatto, C.C. (2015) Green Synthesis of Metal Nanoparticles by Plants: Current Trends and Challenges. In: Basiuk, V. and Basiuk, E., Eds., Green Processes for Nanotechnology, Springer, Cham, 259-275.
https://doi.org/10.1007/978-3-319-15461-9_9
[6]
Metz, K.M., Sanders, S.E., Pender, J.P., Dix, M.R., Hinds, D.T., Quinn, S.J., Ward, A.D., Duffy, P., Cullen, R.J. and Colavita, P.E. (2015) Green Synthesis of Metal Nanoparticles via Natural Extracts: The Biogenic Nanoparticle Corona and Its Effects on Reactivity. ACS Sustainable Chemistry and Engineering, 3, 1610-1617.
https://doi.org/10.1021/acssuschemeng.5b00304
[7]
Parashar, V., Parashar, R., Sharma, B. and Pandey, A.C. (2009) Parthenium Leaf Extract Mediated Synthesis of Silver Nanoparticles: A Novel Approach towards Weed Utilization. Digest Journal of Nanomaterials and Biostructures, 4, 45-50.
[8]
Roy, N. and Barik, A. (2010) Green Synthesis of Silver Nanoparticles Using Unexploited Weed Resources. International Journal of Nanotechnology and Application, 4, 95-101.
[9]
Schapoval, E.E.S., De Vargas, W.M.R., Chaves, C.G., Bridi, R., Zuanazzi, J.A. and Henriques, A.T. (1998) Antiinflammatory and Antinociceptive Activities of Extracts and Isolated Compounds from Stachytarpheta cayennensis. Journal of Ethnopharmacology, 60, 53-59. https://doi.org/10.1016/S0378-8741(97)00136-0
[10]
Adebajo, A.C., Olawode, O.R., Adesanya, S.A., Begrow, F., Elkhawad, A., Akanmum, R., Edrada, M., AProksh, P. and Scmidt, T.J. (2007) Hypoglycemic Constituent of Stachytarpheta cayennensis Leaf. Planta Medica, 73, 241-250.
https://doi.org/10.1055/s-2007-967125
[11]
Okoye, T.C., Akah, P.A., Okoli, C.O., Ezike, A.C. and Mbaoji, F.N. (2010) Antimicrobial and Antispasmodic Activity of Leaf Extract and Fractions of Stachytarpheta cayennensis. Asian Pacific Journal of Tropical Medicine, 3, 189-192.
https://doi.org/10.1016/S1995-7645(10)60006-5
[12]
Meva, F. E., Segnou, M.L., Ebongue, C.O., Ntoumba, A.A., Steve, D.Y., Malolo, F. E.A., Ngah, L., Massai, H. and Mpondo, E.M. (2016) Unexplored Vegetal for the Green Synthesis of Silver Nanoparticles: A Preliminary Study with Corchorus olitorus Linn and Ipomoea batas (L.) Lam. African Journal of Biotechnology, 15, 341-349. https://doi.org/10.5897/AJB2015.14962
[13]
Putz, H. and Brandenburg, K.G. Match!—Phase Identification from Powder Diffraction. Crystal Impact, Bonn, Germany. http://www.crystalimpact.com/match
[14]
Rodríguez-Carvajal, J. (1990) Fullprof: A Program for Rietveld Refinement and Pattern Matching Analysis. Satellite Meeting on Powder Diffraction of the XV Congress of the IUCr, Toulouse, France, 16-19 July 1990, 127.
[15]
Bhakya, S., Muthukrishnan, S., Sukumaran, M. and Muthukumar, M. (2016) Biogenic Synthesis of Silver Nanoparticles and Their Antioxidant and Antibacterial Activity. Applied Nanoscience, 6, 755-766. https://doi.org/10.1007/s13204-015-0473-z
[16]
Prieto, P., Pineda, M. and Aguilar, M. (1999) Spectrophotometric Quantitation of Antioxidant Capacity through the Formation of a Phosphomolybdenum Complex Specific Application to the Determination of Vitamin E. Analytical Biochemistry, 269, 337-341. https://doi.org/10.1006/abio.1999.4019
[17]
Ullah, H.M.A., Zaman, S., Juhara, F., Akter, L., Tareq, S.M., Masum, E.H. and Bhattacharjee, R. (2014) Evaluation of Antinociceptive, In-Vivo and In-Vitro Anti-Inflammatory Activity of Ethanolic Extract of Curcuma zedoaria Rhizome. Complementary and Alternative Medicine, 14, 346.
https://doi.org/10.1186/1472-6882-14-346
[18]
Ebanda, B.K.P., Meva, E.F., Kotsedi, L., Nguemfo, E.L., Zangueu, C.B., Ntoumba, A.A., Mohamed, H.E.A., Dongmo, A.B. and Maaza, M. (2018) Eco-Friendly Synthesis, Characterization, in Vitro and in Vivo Anti-Inflammatory Activity of Silver Nanoparticle-Mediated Selaginella myosurus Aqueous Extract. International Journal of Nanomedicine, 13, 8537-8548. https://doi.org/10.2147/IJN.S174530
[19]
Rani, R., Sharma, S., Quaglio, M., Rai, R., Bianco, S., Pugliese, D. and Pirri, C.F. (2017) A Novel Low Temperature Synthesis of KNN Nanoparticles by Facile Wet Chemical Method. Materials Sciences and Applications, 8, 247-257.
https://doi.org/10.4236/msa.2017.83017
[20]
Khan, M.A.M., Kumar, S., Ahamed, M., Alrokayan, S.A. and AlSalhi, M.S. (2011) Structural and Thermal Studies of Silver Nanoparticles and Electrical Transport Study of Their Thin Films. Nanoscale Research Letters, 6, 434.
https://doi.org/10.1186/1556-276X-6-434
[21]
Rani, R. and Sharma, S. (2016) Preparation and Characterization of SnO2 Nanofibers via Electrospinning. Advances in Nanoparticles, 5, 53-59.
https://doi.org/10.4236/anp.2016.51006
[22]
Theivasanthi, T. and Alagar, M. (2012) Electrolytic Synthesis and Characterizations of Silver Nanopowder. Nano Biomedicine and Engineering, 4, 58-65.
https://doi.org/10.5101/nbe.v4i2.p58-65
[23]
Ahmed, D., Khan, M.M. and Saeed, R. (2015) Comparative Analysis of Phenolics, Flavonoids, and Antioxidant and Antibacterial Potential of Methanolic, Hexanic and Aqueous Extracts from Adiantum caudatum Leaves. Antioxidants, 4, 394-409.
https://doi.org/10.3390/antiox4020394
[24]
Rao, C.N.R. and Muller, A. (2004) The Chemistry of Nanomaterials: Synthesis, Properties and Applications. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
https://doi.org/10.1002/352760247X
[25]
Mulvaney, P. (1996) Surface Plasmon Spectroscopy of Nanosized Metal Particles. Langmuir, 12, 788-800.
[26]
Awwad, A.M., Salem, N.M., Ibrahim, Q.M. and Abdeen, A.O. (2015) Phytochemical Fabrication and Characterization of Silver/Silver Chloride Nanoparticles Using Albiziajulibrissin Flowers Extract. Advanced Materials Letters, 6, 726-730.
https://doi.org/10.5185/amlett.2015.5816
[27]
Meva, F.E., Ebongue, C.O., Fannang, V.S., Segnou, M.L., Ntoumba, A.A., Kedi, P. B.E., Loudang, R.E.N., Wanlao, A.Y., Mang, R.E. and Mpondo, M.E.A. (2017) Natural Substances for the Synthesis of Silver Nanoparticles Against Escherichia coli: The Case of Megaphrynium macrostachyum (Marantaceae), Corchorus olitorus (Tiliaceae), Ricinodendron heudelotii (Euphorbiaceae), Gnetum bucholzianum (Gnetaceae), and Ipomoea batatas (Convolvulaceae). Journal of Nanomaterials, 2017, Article ID: 6834726. https://doi.org/10.1155/2017/6834726
[28]
Wang, P., Huang, B., Lou, Z., Zhang, X., Qin, X., Dai, Y., Zheng, Z. and Wang, X. (2010) Synthesis of Highly Efficient Ag@AgCl Plasmonic Photocatalyst with Various Structures. Chemistry—A European Journal, 16, 538-544.
https://doi.org/10.1002/chem.200901954
[29]
Inagaki, M., Nonaka, R., Tryba, B. and Morawski, A.W. (2006) Dependence of Photocatalytic Activity of Anatase Powders on Their Crystallinity. Chemosphere, 64, 437-445. https://doi.org/10.1016/j.chemosphere.2005.11.052
[30]
White, P.J. and Broadley, M.R. (2001) Chloride in Soils and Its Uptake and Movement within the Plant: A Review. Annals of Botany, 88, 967-988.
https://doi.org/10.1006/anbo.2001.1540
[31]
Ostwald, W. (1901) Blocking of Ostwald Ripening Allowing Long-Term Stabilization. Zeitschrift für Physikalische Chemie, 37, 385.
[32]
Ostwald, W. (1986) Lehrbuch der Allgemeinen Chemie. Zeitschrift für Anorganische und Allgemeine Chemie, 15, 540-614.
[33]
Janiak, C. (2013) Ionic Liquids for the Synthesis and Stabilization of Metal Nanoparticles. Zeitschrift für Naturforschung, 68, c1056-c1089.
[34]
Thilagavathi, T., Kathiravan, G. and Srinivasan, K. (2016) Antioxidant Activity and Synthesis of Silver Nanoparticles Using the Leaf Extract of Limona acidissima. International Journal of Pharmacy and Biological Sciences B, 7, 201-205.
[35]
Banerjee, S.K., Jagannath, C., Hunter, R.L. and Dasgupta, A. (2000) Bioavailability of Tobramycin after Oral Delivery in FVB Mice Using CRL-1605 Copolymer, an Inhibitor of P-Glycoprotein. Life Sciences, 67, 2011-2016.
https://doi.org/10.1016/S0024-3205(00)00786-4
[36]
Khan, I., Saeed, K. and Khan, I. (2017) Nanoparticles: Properties, Applications and Toxicities. Arabian Journal of Chemistry, in press.
https://doi.org/10.1016/j.arabjc.2017.05.011
[37]
Rajan Rushender, C., Eerike, M., Madhusudhanan, N. and Konda, V.G.R. (2012) In Vitro Antioxidant and Free Radical Scavenging Activity of Nymphaca pubescens. Journal of Pharma Research, 5, 3804-3806.
[38]
AshaRani, P.V., Mun, G.L.K., Hande, M.P. and Valiyaveettil, S. (2009) Cytotoxicity and Genotoxicity of Silver Nanoparticles in Human Cells. ACS Nano, 3, 279-290.
https://doi.org/10.1021/nn800596w
[39]
Morones, J.R., Elechiguerra, L.J., Camacho, A., Holt, K., Kouri, B.J. and Ramirez, T.J. (2005) The Bacterial Effect of Silver Nanoparticles. Nanotechnology, 16, 2346-2353. https://doi.org/10.1088/0957-4484/16/10/059
[40]
Nordberg, J. and Arnér, E.S.J. (2001) Reactive Oxygen Species, Antioxidants, and the Mammalian Thioredoxin System. Free Radical Biology and Medicine, 31, 1287-1312. https://doi.org/10.1016/S0891-5849(01)00724-9
[41]
Mata, R., Nakkala, J.R. and Sadras, S.R. (2015) Catalytic and Biological Activities of Green Silver Nanoparticles Synthesized from Plumeria alba (Frangipani) Flower Extract. Materials Science and Engineering: C, 51, 216-225.
https://doi.org/10.1016/j.msec.2015.02.053
[42]
Khan, A.U., Weil, Y., Khan, Z.U.H., Tahir, K., Khan, S.U., Ahmad, A., Khan, F.U., Cheng, L. and Yuan, Q. (2015) Electrochemical and Antioxidant Properties of Biogenic Silver Nanoparticles. International Journal of Electrochemical Science, 10, 7905-7916.
[43]
Mariam, J., Sivakami, S. and Dongre, P.M. (2015) Albumin Corona on Nanoparticles—A Strategic Approach in Drug Delivery. Drug Delivery, 23, 2668-2376.
https://doi.org/10.3109/10717544.2015.1048488