全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Disintegration of the Astroglial Domain Organization May Underlie the Loss of Reality Comprehension in Schizophrenia: A Hypothetical Model

DOI: 10.4236/ojmp.2019.82002, PP. 15-35

Keywords: Schizophrenia, Astroglial Domains, Disintegration, Loss of Reality Comprehension

Full-Text   Cite this paper   Add to My Lib

Abstract:

A pathophysiological model of the loss of reality comprehension in schizophrenia is proposed. Based on a formalism it is hypothesized that astroglial domains exert an information-categorizing function which becomes progressively lost in the schizophrenic process, caused by functional and structural disintegration of astroglial domains. Unconstrained synaptic neurotransmission functionally disintegrates the astroglial domains. Microdomains located between perisynaptic astroglial processes and the synaptic membrane are interpreted as elementary functional units categorizing synaptic information processing. Unconstrained diffusion of neurotransmitters into the extrasynaptic space leads to the dysfunction of microdomain formation. In parallel, atrophic processes of astroglia progressively break up the connectivity between synaptic and extrasynaptic compartments disrupting astroglial domains. Basically, the organization of astroglia into definite functional and structural units (modules) of astroglial-synaptic information processing may enable the brain to comprehend ontological realms such as subjects and objects in the environment and their distinct qualities. This fundamental capability of cognition is lost in schizophrenia. It is suggested that this ontological confusion of astroglial domain boundaries progressively disorganizes reality comprehension and may represent the basic pathology in schizophrenia underlying the main symptoms of the disorder. Finally, the testing of the model is shortly discussed.

References

[1]  Lakhan, S.E. and Vieira, K.F. (2009) Schizophrenia Pathophysiology: Are We Any Closer to a Complete Model? Annals of General Psychiatry, 8, 12.
https://doi.org/10.1186/1744-859X-8-12
[2]  Jablensky, A. (2010) The Diagnostic Concept of Schizophrenia: Its History, Evolution, and Future Prospects. Dialogues in Clinical Neuroscience, 12, 271-287.
[3]  American Psychiatric Association (2013) Diagnostic and Statistical Manual of Mental Disorders. 5th Edition. American Psychiatric Association, Washington DC.
[4]  Hales, R.E., Yudofsky, S.C. and Talbott, J.A. (1999) The American Psychiatric Press Textbook of Psychiatry. The American Psychiatric Press, Washington DC.
[5]  Owen, M.J., Sawa, A. and Mortensen, P.B. (2016) Schizophrenia. The Lancet, 388, 86-97. https://doi.org/10.1016/S0140-6736(15)01121-6
[6]  Karl, T. and Arnold, J.C. (2014) Schizophrenia: A Consequence of Gene-Environment Interactions? Frontiers in Behavioral Neuroscience, 8, 435.
https://doi.org/10.3389/fnbeh.2014.00435
[7]  Verkhratsky, A., Rodriguez, J.J. and Steardo, L. (2014) Astrogliopathology: A Central Element of Neuropsychiatric Diseases? Neuroscientist, 20, 576-588.
https://doi.org/10.1177/1073858413510208
[8]  Haller, C.S., Padmanabhan, J.L., Lizano, P. and Keshavan, M (2014) Recent Advances in Understanding Schizophrenia. F1000 Prime Reports, 6, 57.
https://doi.org/10.12703/P6-57
[9]  Vadakkan, K.I. (2012) A Structure-Function Mechanism for Schizophrenia. Frontiers in Psychiatry, 3, 108. https://doi.org/10.3389/fpsyt.2012.00108
[10]  Bernstein, H.G., Steiner, J., Guest, P.C., Dobrowolny, H. and Bogerts, B. (2015) Glia Cells as Key Players in Schizophrenia Pathology: Recent Insights and Concepts of Therapy. Schizophrenia Research, 161, 4-18.
https://doi.org/10.1016/j.schres.2014.03.035
[11]  Wang, C., Aleksic, B. and Ozaki, N. (2015) Glia-Related Genes and Their Contribution to Schizophrenia. Psychiatry and Clinical Neurosciences, 69, 448-461.
https://doi.org/10.1111/pcn.12290
[12]  Verkhratsky, A., Steardo, L., Peng, L. and Parpura, V. (2016) Astroglia, Glutamatergic Transmission and Psychiatric Diseases. In: Schousboe, A. and Sonnewald, U., Eds., The Glutamate/GABA Cycle: Advances in Neurobiology, Springer, Berlin, 307-326. https://doi.org/10.1007/978-3-319-45096-4_12
[13]  Mitterauer, B.J. (2003) The Loss of Self-Boundaries: Towards a Neuromolecular Theory of Schizophrenia. BioSystems, 72, 209-215.
https://doi.org/10.1016/S0303-2647(03)00144-8
[14]  Mitterauer, B. (2005) Nonfunctional Glial Binding Proteins in Tripartite Synapses: A Pathophysiological Model of Schizophrenia. Neuroscientist, 11, 192-198.
https://doi.org/10.1177/1073858404265745
[15]  Mitterauer, B. (2005) Verlust der Selbst-Grenzen. Entwurf einer interdisziplinären Theorie der Schizophrenie. Springer, Vienna, New York.
[16]  Mitterauer, B. (2010) Synaptic Imbalances in Endogenous Psychoses. BioSystems, 100, 113-121. https://doi.org/10.1016/j.biosystems.2010.02.006
[17]  Mitterauer, B.J. (2011) Possible Role of Glia in Cognitive Impairment in Schizophrenia. CNS Neuroscience and Therapeutics, 17, 333-334.
https://doi.org/10.1111/j.1755-5949.2009.00113.x
[18]  Mitterauer, B.J.(2014) Pathophysiology of Schizophrenia Based on Impaired Glial-Neuronal Interactions. Open Journal of Medical Psychology, 3, 126-140.
https://doi.org/10.4236/ojmp.2014.32016
[19]  Mitterauer, B.J. and Kofler-Westergren, B. (2011) Possible Effects of Synaptic Imbalances on Oligodendrocyte-Axonic Interactions in Schizophrenia: A Hypothetical Model. Frontiers in Psychiatry, 2, 15.
https://doi.org/10.3389/fpsyt.2011.00015
[20]  Mitterauer, B. (2007) The Incoherence Hypothesis of Schizophrenia: Based on Decomposed Oligodendrocyte-Axonic Relations. Medical Hypotheses, 69, 1299-1304.
https://doi.org/10.1016/j.mehy.2007.03.024
[21]  Robertson, J.M. (2013) Astrocyte Domains and the Three-Dimensional and Seamless Expression of Consciousness and Explicit Memories. Medical Hypotheses, 81, 1017-1024. https://doi.org/10.1016/j.mehy.2013.09.021
[22]  Oberheim, N.A., Wang, X., Goldman, S. and Nedergaard, M. (2006) Astrocytic Complexity Distinguishes the Human Brain. Trends in Neuroscience, 29, 547-553.
https://doi.org/10.1016/j.tins.2006.08.004
[23]  Bushong, E.A., Martone, M.E., Jones, Y.Z. and Ellisman, M.H. (2002) Protoplasmic Astrocytes in CA1 Striatum Radiatum Occupy Separate Anatomical Domains. Journal of Neuroscience, 22, 183-192.
https://doi.org/10.1523/JNEUROSCI.22-01-00183.2002
[24]  Ogata, K. and Kosaka, T. (2002) Structural and Quantitative Analysis of Astrocytes in the Mouse Hippocampus. Neuroscience, 113, 221-233.
https://doi.org/10.1016/S0306-4522(02)00041-6
[25]  Halassa, M.M., Fellin, T., Takano, H., Dong, J.H. and Haydon, P.G. (2007) Synaptic Islands Defined by the Territory of a Single Astrocyte. Journal of Neuroscience, 27, 6473-6477. https://doi.org/10.1523/JNEUROSCI.1419-07.2007
[26]  Araque, A., Parpura, V., Sanzgiri, R.P. and Haydon, P.G. (1999) Tripartite Synapses: Glia, the Unacknowledged Partner. Trends in Neuroscience, 22, 208-215.
https://doi.org/10.1016/S0166-2236(98)01349-6
[27]  Bernardinelli,Y., Muller, D. and Nikonenko, I. (2014) Astrocyte-Synapse Structural Plasticity. Neural Plasticity, 2014, Article ID: 232105.
https://doi.org/10.1155/2014/232105
[28]  Grosche, J., Matuyash, V., Möller, T., Verkhratsky, A., et al. (1999) Microdomains for Neuron-Glia Interaction: Parallel Fiber Signaling to Bergmann Glial Cells. Nature Neuroscience, 2, 139-143. https://doi.org/10.1038/5692
[29]  Lefebre, C. and Cohen, H. (2005) Handbook of Categorization. Elsevier, New York.
[30]  Parpura, V., Heneka, M.T., Montana, V., Oliet, S.H., et al. (2012) Glial Cells in (Patho)Physiology. Journal of Neurochemistry, 121, 4-27.
https://doi.org/10.1111/j.1471-4159.2012.07664.x
[31]  Heller, J.P. and Rusakov, D.A. (2015) Morphological Plasticity of Astroglia: Understanding Synaptic Microenvironment. Glia, 63, 2133-2151.
https://doi.org/10.1002/glia.22821
[32]  Oliet, S.H. and Bonfardin, V.D. (2010) Morphological Plasticity of the Rat Supraoptic Nucleus-Cellular Consequences. European Journal of Neuroscience, 32, 1989-1994. https://doi.org/10.1111/j.1460-9568.2010.07514.x
[33]  Perez-Alvarez, A., Navarrete, M., Covelo, A., Martin, E.D. and Araque, A. (2014) Structural and Functional Plasticity of Astrocyte Processes and Dendrite Spine Interactions. Journal of Neuroscience, 34, 12738-12744.
https://doi.org/10.1523/JNEUROSCI.2401-14.2014
[34]  Bellesi, M., deVivo, L., Tononi, G. and Cirelli, C. (2015) Effects of Sleep and Wake on Astrocytes: Clues from Molecular and Ultrastructural Studies. BMC Biology, 13, 66. https://doi.org/10.1186/s12915-015-0176-7
[35]  Oberheim, N.A., Takano, T., Han, X., He, W., et al. (2009) Uniquely Hominide Features of Adult Human Astrocytes. Journal of Neuroscience, 29, 3276-3287.
https://doi.org/10.1523/JNEUROSCI.4707-08.2009
[36]  Srinivasan, R., Huang, B.S., Venugopal, S., Johnston, A.D., et al. (2015) Ca2+ Signaling in Astrocytes from Ip3r2-/- Mice in Brain Slices and during Startle Responses in Vivo. Nature Neuroscience, 18, 708-717.
https://doi.org/10.1038/nn.4001
[37]  DiCastro, M.A., Chuquet, J., Liaudet, N., Bhaukaurally, K., et al. (2011) Local Ca2+ Detection and Modulation of Synaptic Release by Astrocytes. Nature Neuroscience, 14, 1276-1284. https://doi.org/10.1038/nn.2929
[38]  Volterra, A., Liaudet, N. and Savtchouk, I. (2014) Astrocyte Ca2+ Signaling: An Unexpected Complexity. Nature Reviews Neuroscience, 15, 327-335.
https://doi.org/10.1038/nrn3725
[39]  Papouin, T., Dunphy, J., Tolman, M., Foley, C. and Haydon, P.G. (2017) Astrocytic Control of Synaptic Function. Philosophical Transactions of the Royal Society B, 372, Article ID: 20160154. https://doi.org/10.1098/rstb.2016.0154
[40]  Araque, A., Carmignoto, G., Haydon, P.G., Oliet, S.H.R., Robitaille, R. and Volterra, A. (2014) Gliotransmitters Travel in Time and Space. Neuron, 81, 728-739.
https://doi.org/10.1016/j.neuron.2014.02.007
[41]  Werner, G. and Mitterauer, B.J. (2014) The Dynamics of Neuromodulation. In: Plenz, D. and Niebur, E., Eds., Criticality in Neural Systems, Wiley-VCH, Weinheim, 525-537. https://doi.org/10.1002/9783527651009.ch25
[42]  Pereira, A.Jr. and Furlan, F.A. (2010) Astrocytes and Human Cognition: Modeling Information Integration and Modulation of Neuronal Activity. Progress in Neurobiology, 92, 405-420. https://doi.org/10.1016/j.pneurobio.2010.07.001
[43]  Hirrlinger, J., Hülsmann, S. and Kirchhoff, F. (2004) Astroglial Processes Show Spontaneous Motility at Active Synaptic Terminals in Situ. European Journal of Neuroscience, 20, 2235-2239. https://doi.org/10.1111/j.1460-9568.2004.03689.x
[44]  Kozachkov, L. and Michmizos, K.P. (2017) The Causal Role of Astrocytes in Slow-Wave Rhythmogenesis: A Computational Modeling Study.
[45]  Grosche, A., Grosche, J., Tackenberg, M., Scheller, D., et al. (2013). Versatile and Simple Approach to Determine Astrocyte Territories in Mouse Neocortex and Hippocampus. PLoS ONE, 8, e69143. https://doi.org/10.1371/journal.pone.0069143
[46]  Panatier, A., Valle, J., Haber, M., Murai, K.K., et al. (2011) Astrocytes Are Endogenous Regulators of Basal Transmission At Central Synapses. Cell, 146, 785-798. https://doi.org/10.1016/j.cell.2011.07.022
[47]  Shan, D., Yates, S., Roberts, R.C. and McCullumsmith, R.E. (2014) Astroglia and Severe Mental Illness: A Role of Glutamate Microdomains. In: Parpura, V. and Verkhratsky, A., Eds., Pathological Potential of Neuroglia, Springer, New York, 373-395.
[48]  Breslin, K., Wade, J.J., Wong-Lin, K.F., Harkin, J., et al. (2018) Potassium and Sodium Microdomains in Thin Astroglial Processes: A Computational Model Study. PLoS Computational Biology, 14, e1006151.
https://doi.org/10.1371/journal.pcbi.1006151
[49]  Papouin, T., Dunphy, J.M., Tolman, M., Dineby, K.T. and Haydon, P.G. (2017) Septal Cholinergic Neuromodulation Tunes the Astrocyte-Dependent Gating of Hippocampal NMDA Receptors to Wakefulness. Neuron, 94, 840-854.e7.
https://doi.org/10.1016/j.neuron.2017.04.021
[50]  Schummers, J., Yu, H. and Sur, M. (2008) Tuned Responses of Astrocytes and Their Influence on Hemodynamic Signals in the Visual Cortex. Science, 320, 1638-1643.
https://doi.org/10.1126/science.1156120
[51]  Kettenmann, H. and Zorec, R. (2013) Release of Gliotransmitters and Transmitter Receptors in Astrocytes. In: Kettenmann, H. and Ransom, B.R., Eds., Neuroglia, Oxford University Press, New York, 197-214.
https://doi.org/10.1093/med/9780199794591.003.0017
[52]  Avery, M.C. and Krichmar, J.L. (2017) Neuromodulatory Systems and Their Interactions: A Review of Models, Theories, and Experiments. Frontiers in Neural Circuits, 11, 108. https://doi.org/10.3389/fncir.2017.00108
[53]  Snyder, S. (1996) Drugs and the Brain. Scientific American Library, New York.
[54]  Redgrave, P. and Gurney, K. (2006) The Short-Latency Dopamine Signal: A Role in Discovering Novel Actions? Nature Reviews Neuroscience, 7, 967-975.
https://doi.org/10.1038/nrn2022
[55]  Bromberg-Martin, E.S., Matsumoto, M. and Hikosaka, O. (2010) Dopamine in Motivational Control: Rewarding, Aversive, and Alerting. Neuron, 68, 815-834.
https://doi.org/10.1016/j.neuron.2010.11.022
[56]  Hasselmo, M.O. (1999) Neuromodulation: Acetylcholine and Memory Consolidation. Trends in Cognitive Science, 3, 351-359.
https://doi.org/10.1016/S1364-6613(99)01365-0
[57]  Yu, A.J. and Dayan, P. (2005) Uncertainty, Neuromodulation, and Attention. Neuron, 46, 681-692. https://doi.org/10.1016/j.neuron.2005.04.026
[58]  Picciotto, M.R., Higley, M.J. and Mineur, Y.S. (2012) Acetylcholine as a Neuromodulator: Cholinergic Signaling Shapes Nervous System Function and Behavior. Neuron, 76, 116-129. https://doi.org/10.1016/j.neuron.2012.08.036
[59]  Aston-Jones, G. and Cohen, J.D. (2005) An Integrative Theory of Locus Coeruleus-Norepinephrine Function: Adaptive Gain and Optimal Performance. Annual Reviews of Neuroscience, 28, 403-450.
https://doi.org/10.1146/annurev.neuro.28.061604.135709
[60]  Paukert, M., Argazval, A., Cha, J., Doze, V.A., et al. (2014) Norepinephrine Controls Astroglial Responsiveness to Local Circuit Activity. Neuron, 82, 1263-1270.
https://doi.org/10.1016/j.neuron.2014.04.038
[61]  O’Donell, J., Zeppenfeld, D., McConnell, E., Pena, S., Nedergaard, M. (2012) Norepinephrine: A Neuromodulator That Boosts the Function of Multiple Cell Types to Optimize CNS Performance. Neurochemical Research, 37, 2496-24512.
https://doi.org/10.1007/s11064-012-0818-x
[62]  Nadim, F. and Bucher, D. (2014) Neuromodulation of Neurons and Synapses. Current Opinion in Neurobiology, 29, 48-56.
https://doi.org/10.1016/j.conb.2014.05.003
[63]  Guenther, G. (1962) Cybernetic Ontology and Transjunctional Operations. In: Yovits, M.C., et al., Eds., Self-Organizing Systems, Spartan Books, Washinghton DC, 313-392.
[64]  Mitterauer, B.J. (2013) The Proemial Synapse: Consciousness-Generating Glial-Neuronal Units. In: Pereira, A. and Lehmann, D., Eds., The Unity of Mind, Brain and World, Cambridge University Press, Cambridge, 233-264.
https://doi.org/10.1017/CBO9781139207065.009
[65]  Fellin, T. and Carmignoto, G. (2004) Neuron-to-Astrocyte Signaling in the Brain Represents a Distinct Multifunctional Unit. Journal of Physiology, 559, 3-15.
https://doi.org/10.1113/jphysiol.2004.063214
[66]  Oliveira, J.F., Sardinka, V.M., Guerra-Jones, S., Araque, A. and Sousa, N. (2015) Do Stars Govern Our Actions? Astrocyte Involvement in Rodent Behavior. Trends in Neuroscience, 38, 535-549. https://doi.org/10.1016/j.tins.2015.07.006
[67]  Mitterauer, B.J. (2012) Qualitative Information Processing in Tripartite Synapses: A Hypothetical Model. Cognitive Computation, 4, 181-194.
https://doi.org/10.1007/s12559-011-9115-2
[68]  Chelini, G., Pantazopoulos, H., Durning, P. and Beretta, S. (2018) The Tetrapartite Synapse: A Key Concept in the Pathophysiology of Schizophrenia. European Psychiatry, 60, 60-63. https://doi.org/10.1016/j.eurpsy.2018.02.003
[69]  Windrem, M.S., Osipovitch, M., Liu, Z., Bates, J., et al. (2017) Human iPSC Glial Mouse Chimeras Reveal Glial Contribution to Schizophrenia. Cell Stem Cell, 21, 195-208. https://doi.org/10.1016/j.stem.2017.06.012
[70]  Covelo, A, and Araque, A. (2018) Neuronal Activity Determines Distinct Gliotransmitter Release from a Single Astrocyte. Elife Sciences, 7, e32237.
https://doi.org/10.7554/eLife.32237
[71]  Hashimoto, K., Fukushima, T., Shimizu, E., Komatsu, N., et al. (2003) Decreased Serum Levels of D-Serine in Patients with Schizophrenia: Evidence in Support of the N-Methyl-D-Asparate Receptor Hypofunction Hypothesis of Schizophrenia. Archives of General Psychiatry, 60, 572-576.
https://doi.org/10.1001/archpsyc.60.6.572
[72]  Bendikov, I., Nadri, C, Amar, S., Panizutti, R., et al. (2007) A CSF and Postmortem Brain Study of D-Serine Metabolic Parameters in Schizophrenia. Schizophrenia Research, 90, 41-51. https://doi.org/10.1016/j.schres.2006.10.010
[73]  Ma, T.M., Abazyan, B., Nomura, J., et al. (2013) Pathogenic Disruption of DISC1-Serine Racemase Binding Elicits Schizophrenia-Like Behaviors via D-Serine Depletion. Molecular Psychiatry, 18, 557-567. https://doi.org/10.1038/mp.2012.97
[74]  Xia, M., Abazyan, S., Jouroukhin, Y. and Pletnikov, M. (2016) Behavioral Sequelae of Astrocyte Dysfunction: Focus on Animal Models of Schizophrenia. Schizophrenia Research, 176, 72-82. https://doi.org/10.1016/j.schres.2014.10.044
[75]  Pantazopoulos, H., Woo, T.U., Lim, M.P., Lange, N. and Beretta, S. (2010) Extracellular Matrix-Glial Abnormalities in the Amygdala and Entorhinal Cortex of Subjects Diagnosed with Schizophrenia. Archives of General Psychiatry, 67, 155-166.
https://doi.org/10.1001/archgenpsychiatry.2009.196
[76]  Schwarcz, R. and Hunter, C.A. (2007) Toxoplasma Gondii and Schizophrenia: Linkage through Astrocyte-Derived Kynurenic Acid? Schizophrenia Bulletin, 33, 652-653.
[77]  Plitman, E., Iwata, Y., Carovaggio, F., Nakajima, S., et al. (2017) Kynurenic Acid in Schizophrenia: A Systematic Review and Meta-Analysis. Schizophrenia Bulletin, 43, 764-777. https://doi.org/10.1093/schbul/sbw221
[78]  Labrie, V., Wong, A.H. and Roder, J.C. (2012) Contributions of the D-Serine Pathway to Schizophrenia. Neuropharmacology, 62, 1484-1503.
https://doi.org/10.1016/j.neuropharm.2011.01.030
[79]  Ripke, S., Neale, B., Corvin, A., Walters, J., et al. (2014) Schizophrenia Working Group of the Psychiatric Genomics Consortium. Biological insights from 108 Schizophrenia-Associated Genetic Loci. Nature, 511, 421-427.
https://doi.org/10.1038/nature13595
[80]  Yang, Y., Paspalas, C.D., Jin, L.E., Piccioto, M.R., et al. (2013) Nicotinic a7 Receptors Enhance NMDA Cognitive Circuits in Dorsolateral Prefrontal Cortex. Proceedings of the National Academy of Sciences of the United States of America, 110, 12078-12083. https://doi.org/10.1073/pnas.1307849110
[81]  Zappettini, S., Grilli, M., Olivero, G., Chen, J., et al. (2014) Nicotinic α7 Receptor Activation Subjectively Potentiates the Function of NMDA Receptors in Glutamatergic Terminals of the Nucleus Accumbens. Frontiers in Cellular Neuroscience, 8, 332. https://doi.org/10.3389/fncel.2014.00332
[82]  Mahdavi, A., Bahrami, F. and Janahmadi, M. (2015) Analysis of Impaired LTP in Schizophrenia Using an Extended Mathematical Model of a Tripartite Synapse. 22nd Iranian Conference on Biomedical Engineering (ICBME), Tehran, 25-27 November 2015, 76-80. https://doi.org/10.1109/ICBME.2015.7404120
[83]  Ohnuma, T., Tessler, S., Avai, H., Faull, R.L., et al. (2000) Gene Expression of Metabotropic Glutamate Receptor 5 and Excitatory Amino Acid Transporter 2 in the Schizophrenic Hippocampus. Molecular Brain Research, 85, 24-31.
https://doi.org/10.1016/S0169-328X(00)00222-9
[84]  Bauer, D., Haroutunian, V., Meador-Woodruff, J.H. and McCullumsmith, R.E. (2010) Abnormal Glycosylation of EAAT1 and EAAT2 in Prefrontal Cortex of Elderly Patients with Schizophrenia. Schizophrenia Research, 117, 92-98.
https://doi.org/10.1016/j.schres.2009.07.025
[85]  Rao, J.S., Kellom, M., Reese, E.A., Rapoport, S.I. and Kim, H.W. (2012) Dysregulated Glutamate and Dopamine Transporters in Postmortem Frontal Cortex from Bipolar and Schizophrenic Patients. Journal of Affective Disorders, 136, 63-71.
https://doi.org/10.1016/j.jad.2011.08.017
[86]  Hu, W., McDonald, M.L., Elswick, D.E. and Smeet, R.A. (2015) Cell-Specific Abnormalities of Glutamate Transporters in Schizophrenia. Annals of the New York Academy of Science, 1338, 38-57. https://doi.org/10.1111/nyas.12547
[87]  Karlsson, R.M., Tanaka, K., Saksida, L.M., Bussey, T.J., et al. (2009) Assessment of Glutamate Transporter GLAST (EAAT1)-Deficient Mice for Phenotypes Relevant to the Negative and Executive Cognitive Symptoms of Schizophrenia. Neuropsychopharmacology, 34, 1578-1589. https://doi.org/10.1038/npp.2008.215
[88]  Hashimoto, K., Engberg, G., Shimizu, E., Nordin, C. and Lindstrom, L.H. (2005) Elevated Glutamate/Glutamine Ratio in Cerebrospinal Fluid of First Episode and Drug Naive Schizophrenic Patients. BMC Psychiatry, 5, 6.
https://doi.org/10.1186/1471-244X-5-6
[89]  Baker, D.A., Madayag, A., Kristiansen, L.V., Meador-Woodruff, J.H., et al. (2008) Contribution of Cystine-Glutamate Antiporters to the Psychotomimetic Effects of Phencyclidine. Neuropsychopharmacology, 33, 1760-1772.
https://doi.org/10.1038/sj.npp.1301532
[90]  Rajkowska, G., Miguel-Hidalgo, J.J., Makkos, Z., Meltzer, H., et al. (2002) Layer-Specific Reduction of GFAP-Reactive Astroglia in the Dorsolateral Prefrontal Cortex in Schizophrenia. Schizophrenia Research, 57, 127-138.
https://doi.org/10.1016/S0920-9964(02)00339-0
[91]  Williams, M.R., Hampton, T., Pearce, R.K., Hirsch, S.R., et al. (2013) Astrocyte Decrease in the Subgenual Cingulate and Callosal Genu in Schizophrenia. European Archives of Psychiatry and Clinical Neuroscience, 263, 41-52.
https://doi.org/10.1007/s00406-012-0328-5
[92]  Kolomeets, N.S. and Uranova, N. (2010) Ultrastructural Abnormalities of Astrocytes in the Hippocampus in Schizophrenia and Duration of Illness: A Postmortem Morphometric Study. World Journal of Biological Psychiatry, 11, 282-292.
https://doi.org/10.3109/15622970902806124
[93]  Takahashi, N. and Sakurai, T. (2013) Roles of Glial Cells in Schizophrenia: Possible Targets for Therapeutic Approaches. Neurobiological Disorders, 53, 49-60.
https://doi.org/10.1016/j.nbd.2012.11.001
[94]  Spangaro, M., Bosia, M., Zanoletti, A., Bechi, M., et al. (2012) Cognitive Dysfunction and Glutamate Uptake: Effect of EAAT2 Polymorphism in Schizophrenia. Neuroscience Letters, 522, 151-155.
https://doi.org/10.1016/j.neulet.2012.06.030
[95]  Berretta, S. (2012) Extracellular Matrix Abnormalities in Schizophrenia. Neuropharmacology, 62, 1584-1597.
https://doi.org/10.1016/j.neuropharm.2011.08.010
[96]  Südhof, T.C. (2008) Neuroligins and Neurexins Link Synaptic Function to Cognitive Disease. Nature, 455, 903-911. https://doi.org/10.1038/nature07456
[97]  George, M., Maheshwari, S., Chandran, S., Monokar, J.S. and Rao, T.S. (2017) Understanding the Schizophrenia Prodrome. Indian Journal of Psychiatry, 59, 505-509.
[98]  Holden, C. (2003) Deconstructing Schizophrenia. Science, 299, 333-335.
https://doi.org/10.1126/science.299.5605.333
[99]  Oberheim, N.A., Tian, G.F., Han, X., Peng, W., et al. (2008) Loss of Astrocytic Domain Organization in the Epileptic Brain. Journal of Neuroscience, 28, 3264-3276. https://doi.org/10.1523/JNEUROSCI.4980-07.2008
[100]  Ebish, S.H., Salone, A., Ferri, F., DeBerardis, D., et al. (2013) Out of Touch with Reality? Social Perception in First-Episode Schizophrenia. Social Cognitive and Affective Neuroscience, 8, 394-403. https://doi.org/10.1093/scan/nss012
[101]  Friston, K., Brown, H.R., Liemerkus, J. and Stephan, K.E. (2016) The Disconnection Hypothesis. Schizophrenia Research, 176, 83-94.
https://doi.org/10.1016/j.schres.2016.07.014
[102]  Goghari, V.M., Sponheim, S.R. and MacDonald, A.W. (2010) The Functional Neuroanatomy of Symptom Dimensions in Schizophrenia: A Qualitative and Quantitative Review of a Persistent Question. Neuroscience Biobehavioral Reviews, 34, 468.
https://doi.org/10.1016/j.neubiorev.2009.09.004
[103]  Lee, J.S., Chun, J.W., Lee, S.H., Kim, E., et al. (2015) Altered Neural Basis of the Reality Processing and Its Relation to Cognitive Insight in Schizophrenia. PLoS ONE, 10, e0120478. https://doi.org/10.1371/journal.pone.0120478
[104]  Keromnes, G., Motillon, T., Coulon, N., Berthoz, A., et al. (2018) Self-Other Recognition Impairments in Individuals with Schizophrenia: A New Experimental Paradigm Using Double Mirror. NPJ Schizophrenia, 4, 24.
https://doi.org/10.1038/s41537-018-0065-5
[105]  Losi, G., Mariotti, L., Sessolo, M. and Carmignoto, G. (2017) New Tools to Study Astrocyte Ca2+ Signal Dynamics in Brain Networks in Vivo. Frontiers in Cellular Neuroscience, 11, 134. https://doi.org/10.3389/fncel.2017.00134
[106]  DePitta, M., Volman, V., Berry, H., Parpura, K., et al. (2012) Computational Quest for Understanding the Role of Astrocyte Signaling in Synaptic Transmission and Plasticity. Frontiers in Computational Neuroscience, 6, 98.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133