全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Design and Analysis of MEMS Based Aluminum Nitride (AlN), Lithium Niobate (LiNbO3) and Zinc Oxide (ZnO) Cantilever with Different Substrate Materials for Piezoelectric Vibration Energy Harvesters Using COMSOL Multiphysics Software

DOI: 10.4236/ojapps.2019.94016, PP. 181-197

Keywords: MEMS, Piezoelectric, Energy Harvester, Cantilever, Lithium Niobate (LiNbO3), Aluminum Nitride (AlN), Zinc Oxide (ZnO), Aluminium Substrate, Steel Substrate, Silicon Substrate, COMSOL, Finite Element Method

Full-Text   Cite this paper   Add to My Lib

Abstract:

Interest in energy harvesters has grown rapidly over the last decade. The cantilever shaped piezoelectric energy harvesting beam is one of the most employed designs, due to its simplicity and flexibility for further performance enhancement. The research effort in the MEMS Piezoelectric vibration energy harvester designed using three types of cantilever materials, Lithium Niobate (LiNbO3), Aluminum Nitride (AlN) and Zinc Oxide (ZnO) with different substrate materials: aluminum, steel and silicon using COMSOL Multiphysics package were designed and analyzed. Voltage, mechanical power and electrical power versus frequency for different cantilever materials and substrates were modeled and simulated using Finite element method (FEM). The resonant frequencies of the LiNbO3/Al, AlN/Al and ZnO/Al systems were found to be 187.5 Hz, 279.5 Hz and 173.5 Hz, respectively. We found that ZnO/Al system yields optimum voltage and electrical power values of 8.2 V and 2.8 mW, respectively. For ZnO cantilever on aluminum, steel and silicon substrates, we found the resonant frequencies to be 173.5 Hz, 170 Hz and 175 Hz, respectively. Interestingly, ZnO/steel yields optimal voltage and electrical power values of 9.83 V and 4.02 mW, respectively. Furthermore, all systems were studied at different differentiate frequencies. We found that voltage and electrical power have increased as the acceleration has increased.

References

[1]  Sharma, S.R. and Pant, B. (2017) Design and Development of Guided Four Beam Cantilever Type MEMS Based Piezoelectric Energy Harvester. Microsystem Technologies, 23, 1751-1759.
https://doi.org/10.1007/s00542-016-2940-1
[2]  Firoozy, P., Khadem, S.E. and Pourkiaee, S.M. (2017) Power Enhancement of Broadband Piezoelectric Energy Harvesting Using a Proof Mass and Nonlinearities in Curvature and Inertia. International Journal of Mechanical Sciences, 133, 227-239.
https://doi.org/10.1016/j.ijmecsci.2017.08.048
[3]  Sun, S. and Peter, W. (2019) Modeling of a Horizontal Asymmetric U-Shaped Vibration-Based Piezoelectric Energy Harvester (U-VPEH). Mechanical Systems and Signal Processing, 114, 467-485.
https://doi.org/10.1016/j.ymssp.2018.05.029
[4]  Wei, C. and Jing, X. (2017) A Comprehensive Review on Vibration Energy Harvesting: Modelling and Realization. Renewable and Sustainable Energy Reviews, 74, 1-18.
https://doi.org/10.1016/j.rser.2017.01.073
[5]  Ahmed, R., Mir, F. and Banerjee, S. (2017) A Review on Energy Harvesting Approaches for Renewable Energies from Ambient Vibrations and Acoustic Waves Using Piezoelectricity. Smart Materials and Structures, 26, Article ID: 085031.
https://doi.org/10.1088/1361-665X/aa7bfb
[6]  Toprak, A. and Tigli, O. (2018) Micron Scale Energy Harvesters Using Multiple Piezoelectric Polymer Layers. Sensors and Actuators A: Physical, 269, 412-418.
https://doi.org/10.1016/j.sna.2017.11.035
[7]  Xiang, H.-J., Zhang, Z.-W., Shi, Z.-F. and Li, H. (2018) Reduced-Order Modeling of Piezoelectric Energy Harvesters with Nonlinear Circuits under Complex Conditions. Smart Materials and Structures, 2, Article ID: 045004.
https://doi.org/10.1088/1361-665X/aaaf92
[8]  Tang, G., Yang, B., Liu, J.-Q., Xu, B., Zhu, H.-Y. and Yang, C.-S. (2014) Development of High Performance Piezoelectric d33 Mode MEMs Vibration Energy Harvester Based on PMN-PT Single Crystal Thick Film. Sensors and Actuators A: Physical, 205, 150-155.
https://doi.org/10.1016/j.sna.2013.11.007
[9]  Elvin, N. and Erturk, A. (2013) Advances in Energy Harvesting Methods. Springer Science & Business Media, Berlin.
https://doi.org/10.1007/978-1-4614-5705-3
[10]  Du, S., Jia, Y., Do, C.D. and Seshia, A.A. (2016) An Efficient SSHI Interface with Increased Input Range for Piezoelectric Energy Harvesting under Variable Conditions. IEEE Journal of Solid-State Circuits, 51, 2729-2742.
https://doi.org/10.1109/JSSC.2016.2594943
[11]  Han, M., Yuan, Q., Sun, X. and Zhang, H. (2014) Design and Fabrication of Integrated Magnetic MEMS Energy Harvester for Low Frequency Applications. Journal of Microelectromechanical Systems, 23, 204-212.
https://doi.org/10.1109/JMEMS.2013.2267773
[12]  Körner, C., Bauereiß, A. and Attar, E. (2013) Fundamental Consolidation Mechanisms during Selective Beam Melting of Powders. Modelling and Simulation in Materials Science and Engineering, 21, Article ID: 085011.
https://doi.org/10.1088/0965-0393/21/8/085011
[13]  Lee, K. and Fishwick, P.A. (2001) Building a Model for Real-Time Simulation. Future Generation Computer Systems, 17, 585-600.
https://doi.org/10.1016/j.vacuum.2004.01.052
[14]  http://www.comsol.com
[15]  Akiyama, M., Nagao, K., Ueno, N., Tateyama, H. and Yamada, T. (2004) Influence of Metal Electrodes on Crystal Orientation of Aluminum Nitride Thin Films. Vacuum, 74, 699-703.
https://doi.org/10.1016/j.vacuum.2004.01.052
[16]  Shampa, M. (2014) Preparation of Undoped and Some Doped ZnO Thin Films by Silar and Their Characterization. Bardhaman, New York.
[17]  Mackwitz, P., Rüsing, M., Berth, G., Widhalm, A., Müller, K. and Zrenner, A. (2016) Periodic Domain Inversion in X-Cut Single-Crystal Lithium Niobate Thin Film. Applied Physics Letters, 108, Article ID: 152902.
https://doi.org/10.1063/1.4946010
[18]  Elfrink, R., Kamel, T., Goedbloed, M., Matova, S., Hohlfeld, D., Van Andel, Y., et al. (2009) Vibration Energy Harvesting with Aluminum Nitride-Based Piezoelectric Devices. Journal of Micromechanics and Microengineering, 19, Article ID: 094005.
https://doi.org/10.1088/0960-1317/19/9/094005
[19]  Zhao, X., Shang, Z., Luo, G. and Deng, L. (2015) A Vibration Energy Harvester Using AlN Piezoelectric Cantilever Array. Microelectronic Engineering, 142, 47-51.
https://doi.org/10.1016/j.mee.2015.07.006
[20]  Battista, L., Mecozzi, L., Coppola, S., Vespini, V., Grilli, S. and Ferraro, P. (2014) Graphene and Carbon Black Nano-Composite Polymer Absorbers for a Pyro-Electric Solar Energy Harvesting Device Based on LiNbO3 Crystals. Applied Energy, 136, 357-362.
https://doi.org/10.1016/j.apenergy.2014.09.035
[21]  Kumar, B. and Kim, S.-W. (2012) Energy Harvesting Based on Semiconducting Piezoelectric ZnO Nanostructures. Nano Energy, 1, 342-355.
https://doi.org/10.1016/j.nanoen.2012.02.001
[22]  Song, J., Zhou, J. and Wang, Z.L. (2006) Piezoelectric and Semiconducting Coupled Power Generating Process of a Single ZnO Belt/Wire. A Technology for Harvesting Electricity from the Environment. Nano Letters, 6, 1656-1662.
https://doi.org/10.1021/nl060820v
[23]  Mahmud, A., Khan, A.A., Voss, P., Das, T., Abdel-Rahman, E. and Ban, D. (2018) A High Performance and Consolidated Piezoelectric Energy Harvester Based on 1D/2D Hybrid Zinc Oxide Nanostructures. Advanced Materials Interfaces, 5, Article ID: 1801167.
https://doi.org/10.1002/admi.201801167
[24]  Erturk, A. and Inman, D.J. (2008) On Mechanical Modeling of Cantilevered Piezoelectric Vibration Energy Harvesters. Journal of Intelligent Material Systems and Structures, 19, 1311-1325.
https://doi.org/10.1177/1045389X07085639
[25]  Kumari, K. and Khanna, G. (2016) Design and Simulation of Array of Rectangular Micro Cantilevers Piezoelectric Energy Harvester. International Journal of Engineering Research and Applications, 6, 41-49.
[26]  Anton, S. and Sodano, H.A. (2007) A Review of Power Harvesting Using Piezoelectric Materials (2003-2006). Smart Materials and Structures, 16, R1-R21.
https://doi.org/10.1088/0964-1726/16/3/R01
[27]  Wang, Z.L. and Song, J. (2006) Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays. Science, 312, 242-246.
https://doi.org/10.1126/science.1124005
[28]  Pan, Z.W., Dai, Z.R. and Wang, Z.L. (2001) Nanobelts of Semiconducting Oxides. Science, 291, 1947-1949.
https://doi.org/10.1126/science.1058120
[29]  Hu, G., Ma, Y. and Wang, B. (2009) Mechanical Properties and Morphology of Nylon 11/Tetrapod-Shaped Zinc Oxide Whisker Composite. Materials Science and Engineering A, 504, 8-12.
https://doi.org/10.1016/j.msea.2008.12.025
[30]  https://www.memsnet.org/material/aluminumnitridealnbulk/
[31]  https://www.korth.de/index.php/162/items/19.html
[32]  Nann, T. and Schneider, J. (2004) Origin of Permanent Electric Dipole Moments in Wurtzite Nanocrystals. Chemical Physics Letters, 384, 150-152.
https://doi.org/10.1016/j.cplett.2003.12.017
[33]  Anota, E.C., Villanueva, M.S. and Cocoletzi, H.H. (2010) Electronic Properties of Group III: A Nitride Sheets by Molecular Simulation. Physica Status Solidi C, 7, 2252-2254.
https://doi.org/10.1002/pssc.200983499
[34]  Maggard, P.A., Nault, T.S., Stern, C.L. and Poeppelmeier, K.R. (2003) Alignment of Acentric MoO3F33-Anions in a Polar Material: (Ag3MoO3F3)(Ag3MoO4) Cl. Journal of Solid State Chemistry, 175, 27-33.
https://doi.org/10.1016/S0022-4596(03)00090-2
[35]  Reilly, E.K., Burghardt, F., Fain, R. and Wright, P. (2011) Powering a Wireless Sensor Node with a Vibration-Driven Piezoelectric Energy Harvester. Smart Materials and Structures, 20, Article ID: 125006.
https://doi.org/10.1088/0964-1726/20/12/125006
[36]  Pan, C., Liu, Z., Chen, Y. and Liu, C. (2010) Design and Fabrication of Flexible Piezo-Microgenerator by Depositing ZnO Thin Films on PET Substrates. Sensors and Actuators A: Physical, 159, 96-104.
https://doi.org/10.1016/j.sna.2010.02.023

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133