Neutron pairing energies of some of the finite nuclei have been calculated to understand how the neutron pairing changes as the neutron and proton numbers change from odd to even values in isotopes. How its value changes for even (N) - even (Z), even (N) - odd (Z), odd (N) - even (Z) and odd (N) - odd (Z) nuclei has been brought out. The values of pairing energies have been calculated for light nuclei (20 ≤ A ≤ 55), medium nuclei (100 ≤ A ≤ 140) and heavy nuclei (190 ≤ A ≤ 238) and found to lie between: -16 ≤ Pn ≤ 14 MeV, -6 ≤ Pn ≤ 6 MeV and -5 ≤ Pn ≤ 5 MeV respectively. Positive pairing energies only occurred in odd (N) - even (Z) nuclei and this indicated the most stable isotopic nuclei.
References
[1]
Nave, R. (2010) Nuclear Binding Energy, Hyperphysics. GSU, Atlanta.
[2]
Stern, D.P. (2009) Nuclear Binding Energy. NASA, Washington DC.
[3]
Frisch, D.H. and Thorndike, A.M. (1964) Elementary Particles. Van Nostrand, Princeton, 11-12.
[4]
Fewell, M.P. (1995) The Atomic Nuclide with the Highest Mean Binding Energy. American Journal of Physics, 63, 653-658. https://doi.org/10.1119/1.17828
[5]
Mayer, M.G. and Hensen, J.H.D. (1955) Elementary Theory of Shell Structure.
[6]
Nomoto, M. (1957) Pairing Energy of Nuclear Particles. Progress of Theoretical Physics, 18, 483-492. https://doi.org/10.1143/PTP.18.483
[7]
Wang, M., Audi, G., Wapstra, A.H., et al. (2012) The AME 2012 Atomic Mass Evaluation. Chinese Physics C, 36, 1603. https://doi.org/10.1088/1674-1137/36/12/003
[8]
Ghahramany, N., et al. (2011) New Approach to Nuclear Binding Energy in Integrated Nuclear Model. Physics of Particles and Nuclei Letters, 8, 97-106. https://doi.org/10.1134/S1547477111020087
[9]
Wang, M., et al. (2017) The AME2016 Atomic Mass Evaluation. Chinese Physics C, 41, Article ID: 030003. https://doi.org/10.1088/1674-1137/41/3/030003