全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Nanobiodiversity and Biomimetic Adhesives Development: From Nature to Production and Application

DOI: 10.4236/jbnb.2019.102005, PP. 78-101

Keywords: Bioprospecting, Biomimetics, Bioengineering, Adhesives, Industry

Full-Text   Cite this paper   Add to My Lib

Abstract:

Advances in science and technology, especially in bioprospecting and biomimetics, have provided solutions to everyday problems over time. Through bioengineering, research and the discovery of the mechanisms present in nature for the production and functionality of adhesives, different materials and substances capable of imitating the role of their analogs in nature have been developed, which generates positive consequences in the area of the medical, textile, wood industry, among others. In this review, we present some researches and discoveries that have been made, which focus on the way in which adhesives produced by organisms found in nature are made, such as: marine organisms, plants, land organisms, insects, among others. In addition, different types of adhesives that exist and how they can be produced synthetically to be oriented to several industrial applications are mentioned, too.

References

[1]  Sun, J. and Bhushan, B. (2019) Nanomanufacturing of Bioinspired Surfaces. Tribology International, 129, 67-74.
https://doi.org/10.1016/j.triboint.2018.08.007
[2]  Alvarado, R. and Baudrit, J.R.V. (2013) Bioinspired Engineering at Nanoscale: Integration of Synthetic Biology and Bionanotechnology. Journal of Bionanoscience, 7, 485-496.
https://doi.org/10.1166/jbns.2013.1179
[3]  Sun, H., Klok, H.A. and Zhong, Z. (2018) Polymers from Nature and for Nature.
[4]  Liu, J., Wang, S., Tang, Z., Huang, J., Guo, B. and Huang, G. (2016) Bioinspired Engineering of Two Different Types of Sacrificial Bonds into Chemically Cross-Linked cis-1, 4-polyisoprene toward a High-Performance Elastomer. Macromolecules, 49, 8593-8604.
https://doi.org/10.1021/acs.macromol.6b01576
[5]  Nawamawat, K., Sakdapipanich, J.T., Ho, C.C., Ma, Y., Song, J. and Vancso, J.G. (2011) Surface Nanostructure of Hevea brasiliensis Natural Rubber Latex Particles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 390, 157-166.
https://doi.org/10.1016/j.colsurfa.2011.09.021
[6]  Rippel, M.M., Costa, C.A.R. and Galembeck, F. (2004) Natural Rubber Latex Modification by Sodium Polyphosphate: A SPM Study on the Improved Latex Adhesion to Glass Sheet. Polymer, 45, 3367-3375.
https://doi.org/10.1016/j.polymer.2004.03.013
[7]  Favi, P.M., Yi, S., Lenaghan, S.C., Xia, L. and Zhang, M. (2014) Inspiration from the Natural World: From Bio-Adhesives to Bio-Inspired Adhesives. Journal of Adhesion Science and Technology, 28, 290-319.
https://doi.org/10.1080/01694243.2012.691809
[8]  Wang, Z., Zhao, S., Song, R., Zhang, W., Zhang, S. and Li, J. (2017) The Synergy between Natural Polyphenol-Inspired Catechol Moieties and Plant Protein-Derived Bio-Adhesive Enhances the Wet Bonding Strength. Scientific Reports, 7, 9664.
https://doi.org/10.1038/s41598-017-10007-8
[9]  Northen, M.T. and Turner, K.L. (2005) A Batch Fabricated Biomimetic Dry Adhesive. Nanotechnology, 16, 1159.
https://doi.org/10.1088/0957-4484/16/8/030
[10]  Lee, H., Lee, B.P. and Messersmith, P.B. (2007) A Reversible Wet/Dry Adhesive Inspired by Mussels and Geckos. Nature, 448, 338.
https://doi.org/10.1038/nature05968
[11]  Hsiao, K.T., Alms, J. and Advani, S.G. (2003) Use of Epoxy/Multiwalled Carbon Nanotubes as Adhesives to Join Graphite Fibre Reinforced Polymer Composites. Nanotechnology, 14, 791.
https://doi.org/10.1088/0957-4484/14/7/316
[12]  Kaboorani, A. and Riedl, B. (2011) Effects of Adding Nano-Clay on Performance of Polyvinyl Acetate (PVA) as a Wood Adhesive. Composites Part A: Applied Science and Manufacturing, 42, 1031-1039.
https://doi.org/10.1016/j.compositesa.2011.04.007
[13]  Khanlari, S. and Dubé, M.A. (2013) Bioadhesives: A Review. Macromolecular Reaction Engineering, 7, 573-587.
https://doi.org/10.1002/mren.201300114
[14]  Marshall, S.J., Bayne, S.C., Baier, R., Tomsia, A.P. and Marshall, G.W. (2010) A Review of Adhesion Science. Dental Materials, 26, e11-e16.
https://doi.org/10.1016/j.dental.2009.11.157
[15]  Gorb, S.N., Sinha, M., Peressadko, A., Daltorio, K.A. and Quinn, R.D. (2007) Insects Did It First: A Micropatterned Adhesive Tape for Robotic Applications. Bioinspiration & Biomimetics, 2, S117.
https://doi.org/10.1088/1748-3182/2/4/S01
[16]  Liu, D., Chen, H., Chang, P.R., Wu, Q., Li, K. and Guan, L. (2010) Biomimetic Soy Protein Nanocomposites with Calcium Carbonate Crystalline Arrays for Use as Wood Adhesive. Bioresource Technology, 101, 6235-6241.
https://doi.org/10.1016/j.biortech.2010.02.107
[17]  Barthlott, W., Mail, M., Bhushan, B. and Koch, K. (2017) Plant Surfaces: Structures and Functions for Biomimetic Innovations. Nano-Micro Letters, 9, 23.
https://doi.org/10.1007/s40820-016-0125-1
[18]  Gorb, S., Varenberg, M., Peressadko, A. and Tuma, J. (2007) Biomimetic Mushroom-Shaped Fibrillar Adhesive Microstructure. Journal of the Royal Society Interface, 4, 271-275.
https://doi.org/10.1098/rsif.2006.0164
[19]  Labonte, D. and Federle, W. (2015) Rate-Dependence of “Wet” Biological Adhesives and the Function of the Pad Secretion in Insects. Soft Matter, 11, 8661-8673.
https://doi.org/10.1039/C5SM01496D
[20]  Lee, B.P., Messersmith, P.B., Israelachvili, J.N. and Waite, J.H. (2011) Mussel-Inspired Adhesives and Coatings. Annual Review of Materials Research, 41, 99-132.
https://doi.org/10.1146/annurev-matsci-062910-100429
[21]  Mostaert, A.S. and Jarvis, S.P. (2006) Beneficial Characteristics of Mechanically Functional Amyloid Fibrils Evolutionarily Preserved in Natural Adhesives. Nanotechnology, 18, Article ID: 044010.
https://doi.org/10.1088/0957-4484/18/4/044010
[22]  Chun, A.L. (2016) Bioadhesives: Sticky Plants. Nature Nanotechnology.
https://doi.org/10.1038/nnano.2016.126
[23]  Bitton, R. and Bianco-Peled, H. (2008) Novel Biomimetic Adhesives Based on Algae Glue. Macromolecular Bioscience, 8, 393-400.
https://doi.org/10.1002/mabi.200700239
[24]  Zhong, C., Gurry, T., Cheng, A.A., Downey, J., Deng, Z., Stultz, C.M. and Lu, T.K. (2014) Strong Underwater Adhesives Made by Self-Assembling Multi-Protein Nanofibres. Nature Nanotechnology, 9, 858.
https://doi.org/10.1038/nnano.2014.199
[25]  Biswas, A., Bayer, I.S., Biris, A.S., Wang, T., Dervishi, E. and Faupel, F. (2012) Advances in Top-Down and Bottom-Up Surface Nanofabrication: Techniques, Applications & Future Prospects. Advances in Colloid and Interface Science, 170, 2-27.
https://doi.org/10.1016/j.cis.2011.11.001
[26]  Wang, Y., Hu, H., Shao, J. and Ding, Y. (2014) Fabrication of Well-Defined Mushroom-Shaped Structures for Biomimetic Dry Adhesive by Conventional Photolithography and Molding. ACS Applied Materials & Interfaces, 6, 2213-2218.
https://doi.org/10.1021/am4052393
[27]  Ahn, B.K. (2017) Perspectives on Mussel-Inspired Wet Adhesion. Journal of the American Chemical Society, 139, 10166-10171.
https://doi.org/10.1021/jacs.6b13149
[28]  Stewart, R.J., Ransom, T.C. and Hlady, V. (2011) Natural Underwater Adhesives. Journal of Polymer Science Part B: Polymer Physics, 49, 757-771.
https://doi.org/10.1002/polb.22256
[29]  Podsiadlo, P., Liu, Z., Paterson, D., Messersmith, P.B. and Kotov, N.A. (2007) Fusion of Seashell Nacre and Marine Bioadhesive Analogs: High-Strength Nanocomposite by Layer-by-Layer Assembly of Clay and l-3,4-Dihydroxyphenylalanine Polymer. Advanced Materials, 19, 949-955.
https://doi.org/10.1002/adma.200602706
[30]  Zhang, H., et al. (2014) Mussel-Inspired Hyperbranched Poly(amino ester) Polymer as Strong Wet Tissue Adhesive. Biomaterials, 35, 711-719.
https://doi.org/10.1016/j.biomaterials.2013.10.017
[31]  Burke, K.A., Roberts, D.C. and Kaplan, D.L. (2015) Silk Fibroin Aqueous-Based Adhesives Inspired by Mussel Adhesive Proteins. Biomacromolecules, 17, 237-245.
https://doi.org/10.1021/acs.biomac.5b01330
[32]  Modaresifar, K., Azizian, S. and Hadjizadeh, A. (2016) Nano/Biomimetic Tissue Adhesives Development: From Research to Clinical Application. Polymer Reviews, 56, 329-361.
https://doi.org/10.1080/15583724.2015.1114493
[33]  Kamino, K. (2008) Underwater Adhesive of Marine Organisms as the Vital Link between Biological Science and Material Science. Marine Biotechnology, 10, 111-121.
https://doi.org/10.1007/s10126-007-9076-3
[34]  Chen, Y.C. and Yang, H. (2017) Octopus-Inspired Assembly of Nanosucker Arrays for Dry/Wet Adhesion. ACS Nano, 11, 5332-5338.
https://doi.org/10.1021/acsnano.7b00809
[35]  Sun, W. (2017) Octopus-Inspired Nanosuckers: Adhere to the Rough and Wet.
[36]  Shah, G.J. and Sitti, M. (2004) Modeling and Design of Biomimetic Adhesives Inspired by Gecko Foot-Hairs. IEEE International Conference on Robotics and Biomimetics, 22-26 August 2004, 873-878.
[37]  Li, Y., Krahn, J. and Menon, C. (2016) Bioinspired Dry Adhesive Materials and Their Application in Robotics: A Review. Journal of Bionic Engineering, 13, 181-199.
https://doi.org/10.1016/S1672-6529(16)60293-7
[38]  Zhao, A., Mei, T., Lin, X. and Ni, L. (2007) Fabrication and Characterization of Tree-Like Nanorod Arrays for Bionic Gecko Foot-Hairs. 7th IEEE Conference on Nanotechnology, Hong Kong, 2-5 August 2007, 259-262.
[39]  Xu, Q., Zhang, W., Dong, C., Sreeprasad, T.S. and Xia, Z. (2016) Biomimetic Self-Cleaning Surfaces: Synthesis, Mechanism and Applications. Journal of the Royal Society Interface, 13, Article ID: 20160300.
https://doi.org/10.1098/rsif.2016.0300
[40]  Huber, G., Gorb, S.N., Spolenak, R. and Arzt, E. (2005) Resolving the Nanoscale Adhesion of Individual Gecko Spatulae by Atomic Force Microscopy. Biology Letters, 1, 2-4.
https://doi.org/10.1098/rsbl.2004.0254
[41]  Kim, S. and Sitti, M. (2006) Biologically Inspired Polymer Microfibers with Spatulate Tips as Repeatable Fibrillar Adhesives. Applied Physics Letters, 89, Article ID: 261911.
https://doi.org/10.1063/1.2424442
[42]  Tannouri, P., Arafeh, K.M., Krahn, J.M., Beaupre, S.L., Menon, C. and Branda, N.R. (2014) A Photoresponsive Biomimetic Dry Adhesive Based on Doped PDMS Microstructures. Chemistry of Materials, 26, 4330-4333.
https://doi.org/10.1021/cm502222c
[43]  Chaudhary, O.J., Calius, E., Kennedy, J.V. and Travas-Sejdic, J. (2014) Polymer Brushes for Improvement of Dry Adhesion in Biomimetic Dry Adhesives. International Journal of Nanotechnology, 11, 636-644.
https://doi.org/10.1504/IJNT.2014.060586
[44]  Qu, L. and Dai, L. (2007) Gecko-Foot-Mimetic Aligned Single-Walled Carbon Nanotube Dry Adhesives with Unique Electrical and Thermal Properties. Advanced Materials, 19, 3844-3849.
https://doi.org/10.1002/adma.200700023
[45]  Geim, A.K., Dubonos, S.V., Grigorieva, I.V., Novoselov, K.S., Zhukov, A.A. and Shapoval, S.Y. (2003) Microfabricated Adhesive Mimicking Gecko Foot-Hair. Nature Materials, 2, 461.
https://doi.org/10.1038/nmat917
[46]  Bhushan, B. and Sayer, R.A. (2007) Surface Characterization and Friction of a Bio-Inspired Reversible Adhesive Tape. Microsystem Technologies, 13, 71.
https://doi.org/10.1007/s00542-006-0256-2
[47]  Ge, L., Sethi, S., Ci, L., Ajayan, P.M. and Dhinojwala, A. (2007) Carbon Nanotube-Based Synthetic Gecko Tapes. Proceedings of the National Academy of Sciences, 104, 10792-10795.
https://doi.org/10.1073/pnas.0703505104
[48]  Jeong, H.E., Kwak, M.K. and Suh, K.Y. (2010) Stretchable, Adhesion-Tunable Dry Adhesive by Surface Wrinkling. Langmuir, 26, 2223-2226.
https://doi.org/10.1021/la904290g
[49]  Sameoto, D. and Menon, C. (2010) Recent Advances in the Fabrication and Adhesion Testing of Biomimetic Dry Adhesives. Smart Materials and Structures, 19, Article ID: 103001.
https://doi.org/10.1088/0964-1726/19/10/103001
[50]  Iturri, J., Xue, L., Kappl, M., García-Fernández, L., Barnes, W.J.P., Butt, H.J. and del Campo, A. (2015) Torrent Frog-Inspired Adhesives: Attachment to Flooded Surfaces. Advanced Functional Materials, 25, 1499-1505.
https://doi.org/10.1002/adfm.201403751
[51]  Persson, B.N.J. (2007) Wet Adhesion with Application to Tree Frog Adhesive Toe Pads and Tires. Journal of Physics: Condensed Matter, 19, Article ID: 376110.
https://doi.org/10.1088/0953-8984/19/37/376110
[52]  Drotlef, D.M., Appel, E., Peisker, H., Dening, K., del Campo, A., Gorb, S.N. and Barnes, W.J.P. (2015) Morphological Studies of the Toe Pads of the Rock Frog, Staurois parvus (Family: Ranidae) and Their Relevance to the Development of New Biomimetically Inspired Reversible Adhesives. Interface Focus, 5, Article ID: 20140036.
https://doi.org/10.1098/rsfs.2014.0036
[53]  Farrar, D.F. (2012) Bone Adhesives for Trauma Surgery: A Review of Challenges and Developments. International Journal of Adhesion and Adhesives, 33, 89-97.
https://doi.org/10.1016/j.ijadhadh.2011.11.009
[54]  Millar, N.L., Bradley, T.A., Walsh, N.A., Appleyard, R.C., Tyler, M.J. and Murrell, G.A. (2009) Frog Glue Enhances Rotator Cuff Repair in a Laboratory Cadaveric Model. Journal of Shoulder and Elbow Surgery, 18, 639-645.
https://doi.org/10.1016/j.jse.2008.12.007
[55]  Beutel, R.G. and Gorb, S.N. (2001) Ultrastructure of Attachment Specializations of Hexapods (Arthropoda): Evolutionary Patterns Inferred from a Revised Ordinal Phylogeny. Journal of Zoological Systematics and Evolutionary Research, 39, 177-207.
https://doi.org/10.1046/j.1439-0469.2001.00155.x
[56]  Speidel, M.W., Kleemeier, M., Hartwig, A., Rischka, K., Ellermann, A., Daniels, R. and Betz, O. (2017) Structural and Tribometric Characterization of Biomimetically Inspired Synthetic “Insect Adhesives”. Beilstein Journal of Nanotechnology, 8, 45.
https://doi.org/10.3762/bjnano.8.6
[57]  Federle, W., Riehle, M., Curtis, A.S. and Full, R.J. (2002) An Integrative Study of Insect Adhesion: Mechanics and Wet Adhesion of Pretarsal Pads in Ants. Integrative and Comparative Biology, 42, 1100-1106.
https://doi.org/10.1093/icb/42.6.1100
[58]  Li, D., Huson, M.G. and Graham, L.D. (2008) Proteinaceous Adhesive Secretions from Insects, and in Particular the Egg Attachment Glue of Opodiphthera sp. Moths. Archives of Insect Biochemistry and Physiology: Published in Collaboration with the Entomological Society of America, 69, 85-105.
https://doi.org/10.1002/arch.20267
[59]  Peattie, A.M., Dirks, J.H., Henriques, S. and Federle, W. (2011) Arachnids Secrete a Fluid over Their Adhesive Pads. PLoS ONE, 6, e20485.
https://doi.org/10.1371/journal.pone.0020485
[60]  Dirks, J.H. and Federle, W. (2011) Fluid-Based Adhesion in Insects-Principles and Challenges. Soft Matter, 7, 11047-11053.
https://doi.org/10.1039/c1sm06269g
[61]  Sameoto, D., Li, Y. and Menon, C. (2008) Multi-Scale Compliant Foot Designs and Fabrication for Use with a Spider-Inspired Climbing Robot. Journal of Bionic Engineering, 5, 189-196.
https://doi.org/10.1016/S1672-6529(08)60024-4

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133