全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

A Review: On Smart Materials Based on Some Polysaccharides; within the Contextual Bigger Data, Insiders, “Improvisation” and Said Artificial Intelligence Trends

DOI: 10.4236/jbnb.2019.102004, PP. 41-77

Keywords: Polysaccharides, Cellulose, Hemicelluloses, Chitosan, Alginate, Composites, Blends, Hydrogels, Smart Materials, Electro-Active Papers, Sensors, Actuators, Bigger Data, Innovation, Science in Education, Jazz, 4C, CRAC

Full-Text   Cite this paper   Add to My Lib

Abstract:

Smart Materials are along with Innovation attributes and Artificial Intelligence among the most used “buzz” words in all media. Central to their practical occurrence, many talents are to be gathered within new contextual data influxes. Has this, in the last 20 years, changed some of the essential fundamental dimensions and the required skills of the actors such as providers, users, insiders, etc.? This is a preliminary focus and prelude of this review. As an example, polysaccharide materials are the most abundant macromolecules present as an integral part of the natural system of our planet. They are renewable, biodegradable, carbon neutral with low environmental, health and safety risks and serve as structural materials in the cell walls of plants. Most of them are used, for many years, as engineering materials in many important industrial processes, such as pulp and papermaking and manufacture of synthetic textile fibres. They are also used in other domains such as conversion into biofuels and, more recently, in the design of processes using polysaccharide nanoparticles. The main properties of polysaccharides (e.g. low density, thermal stability, chemical resistance, high mechanical strength…), together with their biocompatibility, biodegradability, functionality, durability and uniformity, allow their use for manufacturing smart materials such as blends and composites, electroactive polymers and hydrogels which can be obtained 1) through direct utilization and/or 2) after chemical or physical modifications of the polysaccharides. This paper reviews recent works developed on polysaccharides, mainly on cellulose, hemicelluloses, chitin, chitosans, alginates, and their by-products (blends and composites), with the objectives of manufacturing smart materials. It is worth noting that, today, the fundamental understanding of the molecular level interactions that confer smartness to polysaccharides remains poor and one can predict that new experimental and theoretical tools will emerge to develop the necessary understanding of the structure-property-function relationships that will enable polysaccharide-smartness to be better understood and controlled, giving rise to the development of new and innovative applications such as nanotechnology, foods, cosmetics and medicine (e.g. controlled drug release and regenerative medicine) and so, opening up major commercial markets in the context of green chemistry.

References

[1]  Rebouillat, S. and Noirhomme, B. (2018) Open-Innovation in the Electrical and Electronic Industries: Engineered Bio-Fluid Compositions Are Paving the Way, and Testing Therewith. Journal of Biomaterials and Nanobiotechnology, 9, 189-209.
https://doi.org/10.4236/jbnb.2018.92011
[2]  Rebouillat, S. (1998) Foresee Concept and Young Chemists Industrial Training. The “4C” Skill Balance and the “Intrapreneur”. L’Actualité Chimique, 214, 23-24.
https://www.lactualitechimique.org/numero/425
[3]  Lapray, D. and Rebouillat, S. (2014) “Bigger Data” Visualization to Visual Analytics: A Path to Innovation. “Happening, Definitely! Misleading, Possibly?” A Review of Some Examples Applicable to IP Discovery. International Journal of Innovation and Applied Studies, 7, 1251-1273.
http://www.ijias.issr-journals.org/
[4]  Lapray, M. and Rebouillat, S. (2014) Innovation Review: Closed, Open, Collaborative, Disruptive, Inclusive, Nested… and Soon Reverse. How about the Metrics: Dream and Reality. International Journal of Innovation and Applied Studies, 9, 1-28.
http://www.ijias.issr-journals.org/
[5]  Rebouillat, S., Lyons, M.E.G., Doyle, B.M.P. and Richard, L. (2011) Paving the Way to the Integration of Smart Nanostructures: Part II: Nanostructured Microdispersed Hydrated Metal Oxides for Electrochemical Energy Conversion and Storage Applications. International Journal of Electrochemical Science, 6, 5830-5917.
[6]  Calamel, C. (2010) Le jazz comme science d’éducation: Vers un modèle explicatif du jazz à partir de la formation des savoirs du jazzman. PhD Thesis, University of Paris 10, France.
[7]  Rebouillat, S. (2016) Aramids: “Disruptive”, Open and Continuous Innovation. In: Chen, X., Ed., Advanced Fibrous Composite Materials for Ballistic Protection, Woodhead Publishing Ltd., Sawston, 11.
[8]  Rebouillat, S. (1998) Carbon Fiber Applications in Carbon Fibers. 3rd Edition, Edited, Revised and Expanded by Donnet, J.-B., Wang, T.K., Rebouillat, S. and Peng, J.C.M., CRC Press, Marcel Dekker, New-York, 573.
[9]  Lapray, M. and Rebouillat, S. (2016) A Science & Business Equation for “Bio-Inspired” Innovation. The 3rd International Conference on Bioinspired and Biobased Chemistry & Materials, Nice, 16-19 October 2016.
[10]  Rebouillat, S. (2013) A Science and Business Equation for Collaborative Corporate Innovation. Business Strategy, IP Strategy, R&D Strategy: An All-in-One Business Model. A Review with a Bio-Technology and Green Chemistry Focus. International Journal of Innovation and Applied Studies, 4, 1-19.
http://www.ijias.issr-journals.org/
[11]  Rebouillat, S. and Lapray, D. (2014) A Review Assessing the “Used in the Art” Intellectual Property Search Methods and the Innovation Impact Therewith. International Journal of Innovation and Applied Studies, 5, 160-191.
http://www.ijias.issr-journals.org/
[12]  Rebouillat, S. and Lapray, M. (2014) Bio-Inspired and Bio-Inspiration: A Disruptive Innovation Opportunity or a Matter of “Semantic”? A Review of a “Stronger than Logic” Creative Path Based on Curiosity and Confidence (4C22C). International Journal of Innovation and Applied Studies, 6, 299-325.
http://www.ijias.issr-journals.org/
[13]  Rebouillat, S. (2008) Grafted Para-Aramid Fiber and Method of Making. European Patent EP1123429.
[14]  Rebouillat, S. and Pla, F. (2013) State of the Art Manufacturing and Engineering of Nanocellulose: A Review of Available Data and Industrial Applications. Journal of Biomaterials and Nanobiotechnology, 4, 165-188.
https://doi.org/10.4236/jbnb.2013.42022
[15]  Rebouillat, S. and Pla, F. (2016) Recent Strategies for the Development of Biosourced-Monomers, Oligomers and Polymer-based Materials: A Review with an Innovation and a Bigger Data Focus. Journal of Biomaterials and Nanobiotechnology, 7, 167-213.
https://doi.org/10.4236/jbnb.2016.74017
[16]  Ortega-Requena, S., Rebouillat, S. and Pla, F. (2018) Paving the High-Way to Sustainable, Value Adding Open-Innovation Integrating Bigger-Data Challenges: Three Examples from Bio-Ingredients to Robust Durable Applications of Electrochemical Impacts. Journal of Biomaterials and Nanobiotechnology, 9, 117-188.
https://doi.org/10.4236/jbnb.2018.92010
[17]  Spillman Jr., W.B., Sirkis, J.S. and Gardiner, P.T. (1996) Smart Materials and Structures: What Are They? Journal of Smart Materials and Structure, 5, 247-254.
[18]  Rogers, C.A. (1993) Intelligent Material Systems—The Dawn of a New Materials Age. Journal of Intelligent Material Systems and Structures, 4, 4-12.
https://doi.org/10.1177/1045389X9300400102
[19]  Akhras, G. (1999) Advanced Composites for Smart Structures. Proceedings of the 12th International Conference on Composite Materials, Paris, 5-9 July 1999.
[20]  Cox, L.M., Killgore, J.P., Li, Z., Zhang, Z., Hurley, D.C., Xiao, J. and Ding, Y. (2014) Morphing Metal-Polymer Janus Particles. Advanced Materials, 26, 899-904.
[21]  Ge, Q., Dunn, C.K., QI, H.J. and Dunn, M.L. (2014) Active Origami by 4D Printing. Journal of Smart Materials and Structure, 23, Article ID: 094007.
https://doi.org/10.1088/0964-1726/23/9/094007
[22]  Cox, L.M., Li, Z., Sowan, N., Nair, D., Xiao, J., Bowman, C.N. and Ding, Y. (2014) Reconfigurable Surface Patterns on Covalent Adaptive Network Polymers Using Nanoimprint Lithography. Polymer, 55, 5933-5937.
https://doi.org/10.1016/j.polymer.2014.09.024
[23]  Tadigadapa, S. and Mateti, K. (2009) Piezoelectric MEMS Sensors: State-of-the-Art and Perspectives. Measurement Science and Technology, 20, Article ID: 092001.
https://doi.org/10.1088/0957-0233/20/9/092001
[24]  Bogue, R. (2014) Smart Materials: A Review of Capabilities and Applications. Assembly Automation, 34, 16-22.
https://doi.org/10.1108/AA-10-2013-094
[25]  Fukada, E. (2000) History and Recent Progress in Piezoelectric Polymers. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 47, 1277-1290.
https://doi.org/10.1109/58.883516
[26]  Quant, M., Elizalde, H., Flores, A., Ramírez, R., Orta, P. and Song, G. (2009) A Comprehensive Model for Piezoceramic Actuators: Modelling, Validation and Application. Smart Materials and Structures, 18, Article ID: 125011.
https://doi.org/10.1088/0964-1726/18/12/125011
[27]  Naresh, C., Bose, P. and Rao, C. (2016) IOP Conference Series: Materials Science and Engineering. In: Shape Memory Alloys: A State of Art Review, IOP Publishing, Bristol, UK, Article ID: 012054.
[28]  Carpi, F., De Rossi, D., Kornbluh, R., Pelrine, R.E. and Sommer-Larsen, P. (2011) Dielectric Elastomers as Electromechanical Transducers: Fundamentals, Materials, Devices, Models and Applications of an Emerging Electroactive Polymer Technology. Elsevier, Amsterdam, The Netherlands.
[29]  Choi, Y., Cho, J., Choi, S. and Wereley, N. (2005) Constitutive Models of Electrorheological and Magnetorheological Fluids Using Viscometers. Smart Materials and Structures, 14, 1025-1036.
https://doi.org/10.1088/0964-1726/14/5/041
[30]  Bar-Cohen, Y. (1996) EAP History, Current Status, and Infrastructure. In: Bar-Cohen, Y., Ed., Electroactive Polymer (EAP) Actuators as Artificial Muscles, SPIE Press, Bellingham, Washington DC, 3-42.
[31]  Alvarez-Lorenzo, C., Blanco-Fernandez, B., Puga, A.M. and Concheiro, A. (2013) Crosslinked Ionic Polysaccharides for Stimuli-Sensitive Drug Delivery. Advanced Drug Delivery Reviews, 65, 1148-1171.
https://doi.org/10.1016/j.addr.2013.04.016
[32]  Thiele, J., Ma, Y.J., Bruekers, S.M.C., Ma, S.H. and Huck, W.T.S. (2014) Designer Hydrogels for Cell Cultures: A Materials Selection Guide. Advanced Materials, 26, 125-148.
https://doi.org/10.1002/adma.201302958
[33]  Lee, K.Y. and Mooney, D.J. (2012) Alginate: Properties and Biomedical Applications. Progress in Polymer Science, 37, 106-126.
https://doi.org/10.1016/j.progpolymsci.2011.06.003
[34]  Anwar, Z., Gulfraz, M. and Irshad, M. (2014) Agro-Industrial Lignocellulosic Biomass a Key to Unlock the Future Bio-Energy: A Brief Review. Journal of Radiation Research and Applied Sciences, 7, 163-173.
https://doi.org/10.1016/j.jrras.2014.02.003
[35]  Chen, H. (2014) Chemical Composition and Structure of Natural Lignocellulose. In: Chen, H.Z., Ed., Biotechnology of Lignocellulose: Theory and Practice, Springer, Netherlands, Dordrecht, 25-71.
https://doi.org/10.1007/978-94-007-6898-7_2
[36]  Tanase, E.E., Rapa, M. and Popa, O. (2014) Biopolymers Based on Renewable Resources—A Review. Scientific Bulletin Series F. Biotechnologies, 18, 188-195.
[37]  Klem, D., Heublein, B., Fink, H. and Bohn, A. (2005) Cellulose: Fascinating Biopolymer and Sustainable Raw Material. Angewandte Chemie International Edition, 44, 3358-3393.
https://doi.org/10.1002/anie.200460587
[38]  Klemm, D., Philipp, B., Heinze, T., Heinze, U. and Wagenknecht, W. (1998) Comprehensive Cellulose Chemistry, Volume 1: Fundamentals and Analytical Methods. WILEY-VCH VerlagGmbH, Weinheim, Germany,
[39]  Prabaharan, M. and Mano, J.F. (2006) Stimuli-Responsive Hydrogels Based on Polysaccharides Incorporated with Thermo-Responsive Polymers as Novel Biomaterials. Macromolecular Bioscience, 6, 991-1008.
https://doi.org/10.1002/mabi.200600164
[40]  Sannino, A., Demitri, C. and Madaghiele, M. (2009) Biodegradable Cellulose-Based Hydrogels: Design and Applications. Materials, 2, 353-373.
https://doi.org/10.3390/ma2020353
[41]  Prabaharan, M., Tiwari, A. and Li, S. (2010) Polysaccharides/Poly(N-Isopropy- lacrylamide)-Based Stimuli-Responsive Hydrogels as Novel Biomaterials. In: Li, S., Tiwari, A., Prabaharan, M. and Aryal, S., Eds., Smart Polymer Materials for Biomedical Applications, Nova Science Publishers, New York, 33-56.
[42]  Zhang, Z., Chen, L., Zhao, C., Bai, Y., Deng, M., Shan, H., Zhuang, X., Chen, X. and Jing, X. (2011) Thermo- and pH-Responsive HPC-g-AA/AA Hydrogels for Controlled Drug Delivery Applications. Polymer, 52, 676-682.
https://doi.org/10.1016/j.polymer.2010.12.048
[43]  Hubbe, M.A., Rojas, O.J., Lucia, L.A. and Sain, M. (2008) Cellulosic Nanocomposites: A Review. BioResources, 3, 929-980.
[44]  Zhou, Y., Fuentes-Hernandez, C., Khan, T.M., Liu, J.C., Hsu, J., Shim, J.W., Dindar, A., Youngblood, J.P., Moon, R.J. and Kippelen, B. (2013) Recyclable Organic Solar Cells on Cellulose Nanocrystal Substrates. Scientific Reports, 3, Article No. 1536.
https://doi.org/10.1038/srep01536
[45]  Plaza, N., Zelinka, S.L., Stone, D.S. and Jakes, J.E. (2013) Plant-Based Torsional Actuator with Memory. Smart Materials and Structures, 22, Article ID: 072001.
[46]  Qiu, X.Y. and Hu, S.W. (2013) “Smart” Materials Based on Cellulose: A Review of the Preparations, Properties, and Applications. Materials, 6, 738-781.
https://doi.org/10.3390/ma6030738
[47]  Nogi, M., Iwamoto, S. Nakagaito, A.N. and Yano, H. (2009) Optically Transparent Nanofiber Paper. Advanced Materials, 21, 1595-1598.
https://doi.org/10.1002/adma.200803174
[48]  Nogi, M. and Yano, H. (2008) Transparent Nanocomposites Based on Cellulose Produced by Bacteria Offer Potential Innovation in the Electronics Device Industry. Advanced Materials, 20, 1849-1852.
https://doi.org/10.1002/adma.200702559
[49]  Stigter, M., Bezemer, J., De Groot, K. and Layrolle, P. (2004) Incorporation of Different Antibiotics into Carbonated Hydroxyapatite Coatings on Titanium Implants, Release and Antibiotic Efficacy. Journal of Controlled Release, 99, 127-137.
https://doi.org/10.1016/j.jconrel.2004.06.011
[50]  Müller, F.A., Müller, L., Hofmann, I., Greil, P., Wenzel, M.M. and Staudenmaier, R. (2006) Cellulose-Based Scaffold Materials for Cartilage Tissue Engineering. Biomaterials, 27, 3955-3963.
https://doi.org/10.1016/j.biomaterials.2006.02.031
[51]  Li, J., Wan, Y., Li, L., Liang, H. and Wang, J. (2009) Preparation and Characterization of 2,3-Dialdehyde Bacterial Cellulose for Potential Biodegradable Tissue Engineering Scaffolds. Materials Science and Engineering: C, 29, 1635-1642.
https://doi.org/10.1016/j.msec.2009.01.006
[52]  Giri, J. and Adhikari, R. (2012) A Brief Review on Extraction of Nanocellulose and Its Application. BIBECHANA, 9, 81-87.
https://doi.org/10.3126/bibechana.v9i0.7179
[53]  Jorfi, M. and Foster, E.J. (2015) Recent Advances in Nanocellulose for Biomedical Applications. Journal of Applied Polymer Science, 132, Article ID: 41719.
https://doi.org/10.1002/app.41719
[54]  Kim, J., Yun, S. and Ounaies, Z. (2006) Discovery of Cellulose as a Smart Material. Macromolecules, 39, 4202-4206.
https://doi.org/10.1021/ma060261e
[55]  Mohiuddin, M., Akther, A., Jo, E.B., Kim, H.C. and Kim, J. (2015) Fabrication and Finite Element Analysis of Vibrating Parallel Film Actuator Made with Cellulose Acetate for Potential Haptic Application. Proceedings of the Institution of Mechanical Engineers Part C: Journal of Mechanical Engineering Science, 230, 2720-2727.
[56]  Kim, J., Song, C.S. and Yun, S.R. (2006) Cellulose Based Electro-Active Papers: Performance and Environmental Effects. Smart Materials and Structures, 15, 719-723.
https://doi.org/10.1088/0964-1726/15/3/007
[57]  Kim, J. and Seo, Y.B. (2002) Electro-Active Paper Actuators. Smart Materials and Structures, 11, 355-360.
https://doi.org/10.1088/0964-1726/11/3/305
[58]  Kim, J.H., Lee, S.W., Yun, G.Y., Yang, C., Kim, H.S. and Kim, J. (2009) Observation of Creep Behavior of Cellulose Electro-Active Paper (EAPap) Actuator. In: SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring, Vol. 7289, Society of Photographic Instrumentation Engineers, Bellingham, 1-7.
https://doi.org/10.1117/12.815565
[59]  Kim, H.S., Kim, J., Jung, W., Ampofo, J., Craft, W. and Sankar, J. (2008) Mechanical Properties of Cellulose Electro-Active Paper under Different Environmental Conditions. Smart Materials and Structures, 17, Article ID: 015029.
https://doi.org/10.1088/0964-1726/17/01/015029
[60]  Shahinpoor, M. (2015) Ionic Polymer Metal Composites as Dexterous Manipulators and Haptic Feedback/Tactile Sensors for Minimally Invasive Robotic Surgery. In: Shahinpoor, M., Ed., Ionic Polymer Metal Composites (IPMCs): Smart Multi-Functional Materials and Artificial Muscles, Vol. 2, Royal Society of Chemistry, London, 311-340.
https://doi.org/10.1039/9781782627234-00311
[61]  Kim, J., Jung, W. and Kim, H.S. (2007) In-Plane Strain of Electro-Active Paper under Electric Fields. Sensors and Actuators A: Physical, 140, 225-231.
https://doi.org/10.1016/j.sna.2007.06.041
[62]  Saito, T., Kimura, S., Nishiyama, Y. and Isogai, A. (2007) Cellulose Nanofibers Prepared by TEMPO-Mediated Oxidation of Native Cellulose. Biomacromolecules, 8, 2485-2491.
https://doi.org/10.1021/bm0703970
[63]  Kim, J., Zhai, L., Mun, S., Ko, H.-U. and Yun, Y.-M. (2015) Cellulose Nanocrystals, Nanofibers, and Their Composites as Renewable Smart Materials. In: The 22nd International Symposium on Smart Structures and Materials & Nondestructive Evaluation and Health Monitoring, Vol. 9434, International Society for Optics and Photonics, Bellingham, WA, 1-6.
[64]  Mahadeva, S.K., Yun, S. and Kim, J. (2009) Dry Electroactive Paper Actuator Based on Cellulose/Poly(Ethylene Oxide)—Poly(Ethylene Glycol) Microcomposite. Journal of Intelligent Material Systems and Structures, 20, 1141-1146.
https://doi.org/10.1177/1045389X09103222
[65]  Yang, S.Y. Mahadeva, S.K. and Kim, J. (2013) Remotely Powered and Controlled EAPap Actuator by Amplitude Modulated Microwaves. Smart Materials and Structures, 22, Article ID: 017001.
https://doi.org/10.1088/0964-1726/22/1/017001
[66]  Lee, S.W., Kim, J.H., Kim, J. and Kim, H.S. (2009) Characterization and Sensor Application of Celluloseelectro-Active Paper (EAPap). Chinese Science Bulletin, 54, 2703-2707.
[67]  Kim, J., Lee, H. and Kim, H.S. (2010) Beam Vibration Control Using Cellulose-Based Electro-Active Paper Sensor. International Journal of Precision Engineering and Manufacturing, 11, 823-827.
https://doi.org/10.1007/s12541-010-0099-8
[68]  Yun, G.Y., Kim, J., Kim, J.H. and Kim, S.Y. (2010) Fabrication and Testing of Cellulose EAPap Actuators for Haptic Application. Sensors and Actuators A: Physical, 164, 68-73.
https://doi.org/10.1016/j.sna.2010.09.005
[69]  Kim, J., Yun, G.Y., Kim, J.H., Lee, J. and Kim, J.H. (2011) Piezoelectric Electro-Active Paper (EAPAP) Speaker. Journal of Mechanical Science and Technology, 25, 2763-2768.
https://doi.org/10.1007/s12206-011-0718-z
[70]  Yun, S. and Kim, J. (2011) Mechanical, Electrical, Piezoelectric and Electro-Active Behavior of Aligned Multi-Walled Carbon Nanotube/Cellulose Composites. Carbon, 49, 518-527.
https://doi.org/10.1016/j.carbon.2010.09.051
[71]  King, A.G. (2007) Research Advances: DRPs: Let the Blood Flow; Smart Cellulose May Mean Paper Airplanes That Fly Like Butterflies; Converting Biomass Directly into Electricity. Journal of Chemical Education, 84, 10-14.
https://doi.org/10.1021/ed084p10
[72]  Silva, A.K.A., Richard, C., Bessodes, M., Scherman, D. and Merten, O.W. (2009) Growth Factor Delivery Approaches in Hydrogels. Biomacromolecules, 10, 9-18.
https://doi.org/10.1021/bm801103c
[73]  Bajpai, A.K., Shukla, S.K., Bhanu, S. and Kankane, S. (2008) Responsive Polymer in Controlled Drug Delivery. Progress in Polymer Science, 33, 1088-1118.
https://doi.org/10.1016/j.progpolymsci.2008.07.005
[74]  Wu, D.Q., Wang, T., Lu, B., Xu, X.D., Cheng, S.X., Jiang, X.J., Zhang, X.Z. and Zhuo, R.X. (2008) Fabrication of Supramolecular Hydrogels for Drug Delivery and Stem Cell Encapsulation. Langmuir, 24, 10306-103012.
https://doi.org/10.1021/la8006876
[75]  Khan, F., Tare, R., Richard, O., Oreffo, R. and Bradley, M. (2009) Versatile Biocompatible Polymer Hydrogels: Scaffolds for Cell Growth. Angewandate Chemie International Edition, 48, 978-982.
https://doi.org/10.1002/anie.200804096
[76]  Lee, K.Y. and Mooney, D.J. (2001) Hydrogel for Tissue Engineering. Chemical Reviews, 101, 1869-1880.
https://doi.org/10.1021/cr000108x
[77]  Lee, Y.J. and Braun, P.V. (2003) Tunable Inverse Opal Hydrogel pH Sensors. Advanced Materials, 15, 563-566.
https://doi.org/10.1002/adma.200304588
[78]  Sorber, J., Steiner, G., Schulz, V., Guenther, M., Gerlach, G., Salzer, R. and Amdt, K.F. (2008) Hydrogel-Based Piezoresistive pH Sensors: Investigations Using FT-IR Attenuated Total Reflection Spectroscopic Imaging. Analytical Chemistry, 80, 2957-2962.
https://doi.org/10.1021/ac702598n
[79]  Katsoulos, C., Karageorgiadis, L., Vasileiou, N., Mousafeiropoulos, T. and Asimellis, G. (2009) Customized Hydrogel Contact Lenses for Keratoconus Incorporating Correction for Vertical Coma Aberration. Ophthalmic and Physiological Optics, 29, 321-329.
https://doi.org/10.1111/j.1475-1313.2009.00645.x
[80]  Yasuda, H. (2006) Biocompatibility of Nanofilm-Encapsulated Silicone-Hydrogel Contact Lenses. Macromolecular Bioscience, 6, 121-138.
https://doi.org/10.1002/mabi.200500153
[81]  Ha, E.J., Kim, Y.J., An, S.S.A., Kim, Y.R., Lee, J.O., Lee, S.G. and Paik, H.J. (2008) Purification of His-Tagged Protein Using Ni2+-Poly(2-Acetamidoacrylic Acid) Hydrogel. Journal of Chromatography B, 876, 8-12.
https://doi.org/10.1016/j.jchromb.2008.10.020
[82]  Stuart, M.A.C., Huck, W.T.S., Genzer, J., Müller, M., Ober, C., Stamm, M., Sukhorukov, G.B., Szleifer, I., Tsukruk, V.V., Urban, M., Winnik, F., Zauscher, S., Luzinov, I. and Minko, S. (2010) Emerging Applications of Stimuli-Responsive Polymer Materials. Nature Materials, 9, 101-113.
https://doi.org/10.1038/nmat2614
[83]  Tokarev, I. and Minko, S. (2009) Stimuli-Responsive Hydrogel Thin Films. Soft Matter, 5, 511-524.
https://doi.org/10.1039/B813827C
[84]  Wandera, D., Wickramasinghe, S.R. and Husson, S.M. (2010) Stimuli-Responsive Membranes. Journal of Membrane Science, 357, 6-35.
https://doi.org/10.1016/j.memsci.2010.03.046
[85]  Satarkar, N.S. and Hily, J.Z. (2008) Magnetic Hydrogel Nanocomposites for Remote Controlled Pulsatile Drug Release. Journal of Controlled Release, 130, 246-251.
https://doi.org/10.1016/j.jconrel.2008.06.008
[86]  Vinatier, C., Gauthier, O., Fatimi, A., Merceron, C., Masson, M., Moreau, A., Moreau, F., Fellah, B., Weiss, P. and Guicheux, J. (2009) An Injectable Cellulose-Based Hydrogel for the Transfer of Autologous Nasal Chondrocytes in Articular Cartilage Defects. Biotechnology and Bioengineering, 102, 1259-1267.
https://doi.org/10.1002/bit.22137
[87]  Chang, C., Duan, B., Cai, J. and Zhang, L. (2010) Superabsorbent Hydrogels Based on Cellulose for Smart Swelling and Controllable Delivery. European Polymer Journal, 46, 92-100.
https://doi.org/10.1016/j.eurpolymj.2009.04.033
[88]  Ye, S.H., Watanabe, J., Iwasaki, Y. and Ishihara, K. (2003) Antifouling Blood Purification Membrane Composed of Cellulose Acetate and Phospholipid Polymer. Biomaterials, 24, 4143-4152.
https://doi.org/10.1016/S0142-9612(03)00296-5
[89]  Sannino, A., Pappada, S., Giotta, L. and Maffezzoli, A. (2007) Spin Coating Cellulose Derivatives Onquartz Crystal Microbalance Plates to Obtain Hydrogel-Based Fast Sensors and Actuators. Journal of Applied Polymer Science, 106, 3040-3050.
https://doi.org/10.1002/app.25899
[90]  Ibrahim, S.M., El Salmawi, K.M. and Zahran, A.H. (2007) Synthesis of Crosslinked Superabsorbent Carboxymethyl Cellulose/Acrylamide Hydrogels through Electron-Beam Irradiation. Journal of Applied Polymer Science, 104, 2003-2008.
https://doi.org/10.1002/app.25916
[91]  Çaykara, T., Sengül, G. and Birlik, G. (2006) Preparation and Swelling Properties of Temperature-Sensitive Semi-Interpenetrating Polymer Networks Composed of Poly[(N-tert-butylacrylamide)-co-acrylamide] and Hydroxypropyl Cellulose. Macromolecular Materials and Engineering, 291, 1044-1051.
https://doi.org/10.1002/mame.200600063
[92]  Zhou, D., Zhang, L. and Guo, S. (2005) Mechanism of Lead Biosorption on Cellulose/Chitin Beads. Water Research, 39, 3755-3762.
https://doi.org/10.1016/j.watres.2005.06.033
[93]  Xiong, X., Zhang, L. and Wang, Y. (2005) Polymer Fractionation Using Chromatographic Column Packed with Novel Regenerated Cellulose Beads Modified with Silane. Journal of Chromatography A, 1063, 71-77.
https://doi.org/10.1016/j.chroma.2004.12.002
[94]  Dang, D.L. and Dang, V.L. (1996) Chitosan-Carboxymethylcellulose Hydrogels as Supports for Cell Immobilization. Journal of Macromolecular Science, Part A: Pure and Applied Chemistry, 33, 1875-1884.
https://doi.org/10.1080/10601329608011013
[95]  Faroongsarng, D. and Sukonrat, P. (2008) Thermal Behavior of Water in the Selected Starch- and Cellulose-Based Polymeric Hydrogels. International Journal of Pharmaceutics, 352, 152-158.
https://doi.org/10.1016/j.ijpharm.2007.10.022
[96]  Hebeish, A., Higazy, A., El-Shafei, A. and Sharef, S. (2010) Synthesis of Carboxymethyl Cellulose (CMC) and Starch-Based Hybrids and Their Applications in Flocculation and Sizing. Carbohydrate Polymers, 79, 60-69.
https://doi.org/10.1016/j.carbpol.2009.07.022
[97]  Isiklan, N. (2005) Controlled Release of Insecticide Carbaryl from Sodium Alginate, Sodium Alginate/Gelatin, and Sodium Alginate/Sodium Carboxymethyl Cellulose Blend Beads Crosslinked with Glutaraldehyde. Journal of Applied Polymer Science, 99, 1310-1319.
https://doi.org/10.1002/app.22012
[98]  Liang, H.F., Hong, M.H., Ho, R.M., Chung, C.K., Lin, Y.H., Chen, C.H. and Sung, H.W. (2004) Novel Method Using a Temperature-Sensitive Polymer (Methylcellulose) to Thermally Gel Aqueous Alginate as a pH-Sensitive Hydrogel. Biomacromolecules, 5, 1917-1925.
https://doi.org/10.1021/bm049813w
[99]  Sannino, A., Madaghiele, M., Conversano, F., Mele, G., Maffezzoli, A., Netti, P.A., Ambrosio, L. and Nicolais, L. (2004) Cellulose Derivative-Hyaluronic Acid-Based Microporous Hydrogels Cross-Linked through Divinyl Sulfone to Modulate Equilibrium Sorption Capacity and Network Stability. Biomacromolecules, 5, 92-96.
https://doi.org/10.1021/bm0341881
[100]  Hutchens, S.A., Benson, R.S., Evans, B.R., O’Neill, H.M. and Rawn, C.J. (2006) Biomimetic Synthesis of Calcium-Deficient Hydroxyapatite in a Natural Hydrogel. Biomaterials, 27, 4661-4670.
https://doi.org/10.1016/j.biomaterials.2006.04.032
[101]  Li, L., Meng, L., Zhang, X., Fu, C. and Lu, Q. (2009) The Ionic Liquid-Associated Synthesis of a Cellulose/SWCNT Complex and Its Remarkable Biocompatibility. Journal of Materials Chemistry Articles, 19, 3612-3617.
https://doi.org/10.1039/b823322e
[102]  Xia, H.F., Lin, D.Q. and Yao, S.J. (2007) Preparation and Characterization of Macroporous Cellulose-Tungsten Carbide Composite Beads for Expanded Bed Applications. Journal of Chromatography A, 1175, 55-62.
https://doi.org/10.1016/j.chroma.2007.10.004
[103]  Dou, H., Yang, W., Tao, K., Li, W. and Sun, K. (2010) Thermal Sensitive Microgels with Stable and Reversible Photoluminescence Based on Covalently Bonded Quantum Dots. Langmuir, 26, 5022-5027.
https://doi.org/10.1021/la903667r
[104]  Luo, X., Liu, S., Zhou, J. and Zhang, L. (2009) In Situ Synthesis of Fe3O4/Cellulose Micro-Spheres with Magnetic-Induced Protein Delivery. Journal of Materials Chemistry, 19, 3538-3545.
https://doi.org/10.1039/b900103d
[105]  Bigand, V., Pinel, C., Perez, D.D.S., Rataboul, F., Huber, P. and Petit-Conil, M. (2011) Cationisation of Galactomannan and Xylan Hemicelluloses. Carbohydrate Polymers, 85, 138-148.
https://doi.org/10.1016/j.carbpol.2011.02.005
[106]  Nguyen, Q.A., Tucker, M.P., Keller, F.A. and Eddy, F.P. (2000) Two-Stage Dilute-Acid Pretreatment of Softwoods. Applied Biochemistry and Biotechnology, 84, 561-576.
https://doi.org/10.1385/ABAB:84-86:1-9:561
[107]  Egüés, I., Sanchez, C., Mondragon, I. and Labidi, J. (2012) Effect of Alkaline and Autohydrolysis Processes on the Purity of Obtained Hemicelluloses from Corn Stalks. Bioresource Technology, 103, 239-248.
https://doi.org/10.1016/j.biortech.2011.09.139
[108]  Hasegawa, I., Tabata, K., Okuma, O. and Mae, K. (2004) New Pretreatment Methods Combining a Hot Water Treatment and Water/Acetone Extraction for Thermo-Chemical Conversion of Biomass. Energy & Fuels, 18, 755-760.
https://doi.org/10.1021/ef030148e
[109]  Palm, M. and Zacchi, G. (2003) Extraction of Hemicellulosic Oligosaccharides from Spruce Using Microwave Oven or Steam Treatment. Biomacromolecules, 4, 617-623.
https://doi.org/10.1021/bm020112d
[110]  Froschauer, C., Hummel, M., Iakovlev, M., Roselli, A., Schottenberger, H. and Sixta, H. (2013) Separation of Hemicellulose and Cellulose from Wood Pulp by Means of Ionic Liquid/Cosolvent Systems. Biomacromolecules, 14, 1741-1750.
https://doi.org/10.1021/bm400106h
[111]  Ebringerová, A., Hromádková, Z. and Heinze, T. (2005) Hemicellulose. In: Heinze, T., Ed., Polysaccharides I, Springer, Berlin Heidelberg, 1-67.
https://doi.org/10.1007/b136816
[112]  Oliveira, E.E., Silva, A.E., Junior, T.N., Gomes, M.C.S., Aguiar, L.M., Marcelino, H.R., Araujo, I.B., Bayer, M.P., Ricardo, N.M.P.S., Oliveira, A.G. and Egito, E.S.T. (2010) Xylan from Corn Cobs, a Promising Polymer for Drug Delivery: Production and Characterization. Bioresource Technology, 101, 5402-5406.
https://doi.org/10.1016/j.biortech.2010.01.137
[113]  Saha, B.C. (2003) Hemicellulose Bioconversion. Journal of Industrial Microbiology and Biotechnology, 30, 279-291.
https://doi.org/10.1007/s10295-003-0049-x
[114]  Hartman, J., Albertsson, A. and Sjoberg, J. (2006) Surface- and Bulk-Modified Galactoglucomannan Hemicellulose Films and Film Laminates for Versatile Oxygen Barriers. Biomacromolecules, 7, 1983-1989.
https://doi.org/10.1021/bm060129m
[115]  Hansen, N.M.L. and Plackett, D. (2008) Sustainable Films and Coatings from Hemicelluloses: A Review. Biomacromolecules, 9, 1493-1505.
https://doi.org/10.1021/bm800053z
[116]  Van Tuil, R. (2000) Converting Biobased Polymers into Food Packagings. Proceedings of the Food Biopack Conference, Denmark, 27-29 August 2000, 28-30.
[117]  Peng, X.-W., Ren, J.-L., Zhong, L.-X., Peng, F. and Sun, R.-C. (2011) Xylan-Rich Hemicelluloses-Graft-Acrylic Acid Ionic Hydrogels with Rapid Responses to pH, Salt, and Organic Solvents. Journal of Agricultural and Food Chemistry, 59, 8208-8215.
https://doi.org/10.1021/jf201589y
[118]  Voepel, J., Sjöberg, J., Reif, M., Albertsson, A.-C., Hultin, U.-K. and Gasslander, U. (2009) Drug Diffusion in Neutral and Ionic Hydrogels Assembled from Acetylated Galactoglucomannan. Journal of Applied Polymer Science, 112, 2401-2412.
https://doi.org/10.1002/app.29878
[119]  Ferrari, E., Ranucci, E., Edlund, U. and Albertsson, A.-C. (2015) Design of Renewable Poly(Amidoamine)/Hemicellulose Hydrogels for Heavy Metal Adsorption. Journal of Applied Polymer Science, 132, Article ID: 41695.
[120]  Lin, C., Zhao, P., Li, F., Guo, F., Li, Z. and Wen, X. (2010) Thermosensitive in Situ Forming Dextran-Pluronic Hydrogels through Michael Addition. Materials Science and Engineering: C, 30, 1236-1244.
https://doi.org/10.1016/j.msec.2010.07.004
[121]  Pahimanolis, N., Kilpeläinen, P., Master, E., Ilvesniemi, H. and Seppälä, J. (2015) Novel Thiol-Amine- and Amino Acid Functional Xylan Derivatives Synthesized by Thiol-Ene Reaction. Carbohydrate Polymers, 131, 392-398.
https://doi.org/10.1016/j.carbpol.2015.06.007
[122]  Maleki, L., Edlund, U. and Albertsson, A.-C. (2016) Green Semi-IPN Hydrogels by Direct Utilization of Crude Wood Hydrolysates. ACS Sustainable Chemistry & Engineering, 4, 4370-4377.
https://doi.org/10.1021/acssuschemeng.6b00938
[123]  Maleki, L., Edlund, U. and Albertsson, A.-C. (2017) Synthesis of Full Interpenetrating Hemicellulose Hydrogel Networks. Carbohydrate Polymers, 170, 254-263.
https://doi.org/10.1016/j.carbpol.2017.04.091
[124]  Zhao, W., Glavas, L., Odelius, K., Edlund, U. and Albertsson, A.C. (2014) A Robust Pathway to Electrically Conductive Hemicellulose Hydrogels with High and Controllable Swelling Behavior. Polymer, 55, 2967-2976.
https://doi.org/10.1016/j.polymer.2014.05.003
[125]  Zhao, W., Glavas, L., Odelius, K., Edlund, U. and Albertsson, A.C. (2014) Facile and Green Approach towards Electrically Conductive Hemicellulose Hydrogels with Tunable Conductivity and Swelling Behavior. Chemistry of Materials, 26, 4265-4273.
https://doi.org/10.1021/cm501852w
[126]  Zhao, W., Nugrobo, R.W.N., Odelius, K., Edlund, U., Zhao, C. and Albertsson, A.C. (2015) In Situ Cross-Linking of Stimuli-Responsive Hemicellulose Microgels during Spray Drying. ACS Applied Materials & Interfaces, 7, 4202-4215.
https://doi.org/10.1021/am5084732
[127]  Yang, J.Y., Zhou, X.S. and Fang, J. (2011) Synthesis and Characterization of Temperature Sensitive Hemicellulose-Based Hydrogels. Carbohydrate Polymers, 86, 1113-1117.
https://doi.org/10.1016/j.carbpol.2011.05.043
[128]  Gabrielii, I. and Gatenholm, P. (2015) Preparation and Properties of Hydrogels Based on Hemicellulose. Journal of Applied Polymer Science, 69, 1661-1667.
https://doi.org/10.1002/(SICI)1097-4628(19980822)69:8<1661::AID-APP19>3.0.CO;2-X
[129]  Guan, Y., Zhang, B., Bian, J., Peng, F. and Sun, R.-C. (2014) Nanoreinforced Hemicellulose-Based Hydrogels Prepared by Freeze-Thaw Treatment. Cellulose, 21, 1709-1721.
https://doi.org/10.1007/s10570-014-0211-9
[130]  Guan, Y., Bian, J., Peng, F., Zhang, X.-M. and Sun, R.-C. (2014) High Strength of Hemicelluloses Based Hydrogels by Freeze/Thaw Technique. Carbohydrate Polymers, 101, 272-280.
https://doi.org/10.1016/j.carbpol.2013.08.085
[131]  Meena, R., Lehnen, R., Schmitt, U. and Saake, B. (2011) Effect of Oat Spelt and Beech Xylan on the Gelling Properties of Kappa-Carrageenan Hydrogels. Carbohydrate Polymers, 85, 529-540.
https://doi.org/10.1016/j.carbpol.2011.03.002
[132]  Ayoub, A., Venditti, R. A., Pawlak, J. J., Salam, A. and Hubbe, M.A. (2013) Novel Hemicellulose-Chitosan Biosorbent for Water Desalination and Heavy Metal Removal. ACS Sustainable Chemical Engineering, 1, 1102-1109.
https://doi.org/10.1021/sc300166m
[133]  Mano, J.F., Silva, G.A., Azevedo, H.S., Malafaya, P.B., Sousa, R.A., Silva, S.S., Boesel, L.F., Oliveira, J.M., Santos, T.C., Marques, A.P., Neves, N.M. and Reis, R.L. (2007) Natural Origin Biodegradable Systems in Tissue Engineering and Regenerative Medicine: Present Status and Some Moving Trends. Journal of the Royal Society Interface, 4, 999-1030.
https://doi.org/10.1098/rsif.2007.0220
[134]  Zargar, V., Asghari, M. and Dashti, A. (2015) A Review on Chitin and Chitosan Polymers: Structure, Chemistry, Solubility, Derivatives, and Applications. ChemBioEng Reviews, 2, 204-226.
https://doi.org/10.1002/cben.201400025
[135]  Zia, K.M., Barikani, M., Zuber, M., Bhatti, I.A. and Sheikh, M.A. (2008) Molecular Engineering of Chitin Based Polyurethane Elastomers. Carbohydrate Polymers, 74, 149-158.
https://doi.org/10.1016/j.carbpol.2008.03.013
[136]  Zia, K.M., Zuber, M., Barikani, M., Bhatti, I.A. and Khan, M.B. (2009) Surface Characteristics of Chitin-Based Shape Memory Polyurethane Elastomers. Colloids and Surfaces B: Biointerfaces, 72, 248-252.
https://doi.org/10.1016/j.colsurfb.2009.04.011
[137]  Ravi Kumar, M.N.V. (2000) A Review of Chitin and Chitosan Applications. Reactive and Functional Polymers, 46, 1-27.
https://doi.org/10.1016/S1381-5148(00)00038-9
[138]  Dutta, P.K., Dutta, J. and Tripathi, V.S. (2004) Chitin and Chitosan: Chemistry, Properties and Applications. Journal of Scientific and Industrial Research, 63, 20-31.
http://nopr.niscair.res.in/handle/123456789/5397
[139]  Peniche, C., Argüelles-Monal, W. and Goycoolea, F.M. (2008) Chitin and Chitosan: Major Sources, Properties and Applications. In: Gandini, A. and Belgacem, M., Eds., Monomers, Polymers, Composites Renewable Resources, Elsevier, Amsterdam, 517-542.
https://doi.org/10.1016/B978-0-08-045316-3.00025-9
[140]  Suh, J.K.F. and Matthew, H.W.T. (2000) Application of Chitosan-Based Polysaccharide Biomaterials in Cartilage Tissue Engineering: A Review. Biomaterials, 21, 2589-2598.
https://doi.org/10.1016/S0142-9612(00)00126-5
[141]  Dashtimoghadam, E., Hasani-Sadrabadi, M.M. and Moaddel, H. (2010) Structural Modification of Chitosan Biopolymer as a Novel Polyelectrolyte Membrane for Green Power Generation. Polymers for Advanced Technologies, 21, 726-734.
https://doi.org/10.1002/pat.1496
[142]  Bodnar, M., Hartmann, J.F. and Borbely, J. (2005) Preparation and Characterization of Chitosan-Based Nanoparticles. Biomacromolecules, 6, 2521-2527.
https://doi.org/10.1021/bm0502258
[143]  Valderruten, N.E, Valverde, J.D., Zuluaga, F. and Ruiz-Durántez, E. (2014) Synthesis and Characterization of Chitosan Hydrogels Cross-Linked with Dicarboxylic Acids. Reactive and Functional Polymers, 84, 21-28.
https://doi.org/10.1016/j.reactfunctpolym.2014.08.006
[144]  Xie, W., Xu, P., Wang, W. and Liu, Q. (2002) Preparation and Antibacterial Activity of a Water-Soluble Chitosan Derivative. Carbohydrate Polymers, 50, 35-40.
https://doi.org/10.1016/S0144-8617(01)00370-8
[145]  Sun, T., Xie, W. and Xu, P. (2004) Superoxide Anion Scavenging Activity of Graft Chitosan Derivatives. Carbohydrate Polymers, 58, 374-382.
https://doi.org/10.1016/j.carbpol.2004.06.042
[146]  Yang, S., Tirmizi, S.A., Burns, A., Barney, A.A. and Risen Jr., W.M. (1989) Chitaline Materials: Soluble Chitosan-Polyaniline Copolymers and Their Conductive Doped Forms. Synthetic Metals, 32, 191-200.
https://doi.org/10.1016/0379-6779(89)90841-2
[147]  De Abreu, F.R. and Campana-Filho, S.P. (2005) Preparation and Characterization of Carboxymethylchitosan. Polímeros, 15, 79-83.
https://doi.org/10.1590/S0104-14282005000200004
[148]  Jayakumar, R., Selvamurugan, N., Nair, S.V., Tokura, S. and Tamura, H. (2008) Preparative Methods of Phosphorylated Chitin and Chitosan—An Overview. International Journal of Biological Macromolecules, 43, 221-225.
https://doi.org/10.1016/j.ijbiomac.2008.07.004
[149]  Badawy, M.E., Rabea, E.I., Rogge, T.M., Stevens, C.V., Smagghe, G., Steurbaut, W. and Höfte, M. (2004) Synthesis and Fungicidal Activity of New N,O-Acyl Chitosan Derivatives. Biomacromolecules, 5, 589-595.
https://doi.org/10.1021/bm0344295
[150]  Gorochovceva, N. and Makuška, R. (2004) Synthesis and Study of Water-Soluble Chitosan-O-Poly(Ethylene Glycol) Graft Copolymers. European Polymer Journal, 40, 685-691.
https://doi.org/10.1016/j.eurpolymj.2003.12.005
[151]  Fajardo, A.R., Lopes, L.C., Valente, A.J.M., Rubira, A.F. and Muniz, E.C. (2011) Effect of Stoichiometry and pH on the Structure and Properties of Chitosan/Chondroitin Sulfate Complexes. Colloid and Polymer Science, 289, 1739-1748.
https://doi.org/10.1007/s00396-011-2497-6
[152]  Fajardo, A.R., Piai, J.F., Rubira, A.F. and Muniz, E.C. (2010) Time and pH-Dependent Self-Rearrangement of a Swollen Polymer Network Based on Polyelectrolytes Complexes of Chitosan/Chondroitin Sulfate. Carbohydrate Polymers, 80, 934-943.
https://doi.org/10.1016/j.carbpol.2010.01.009
[153]  Kim, J., Cai, Z., Lee, H.S., Choi, G.S., Lee, D.H. and Jo, C. (2011) Preparation and Characterization of Bacterial Cellulose/Chitosan Composite for Potential Biomedical Application. Journal of Polymer Research, 18, 739-744.
https://doi.org/10.1007/s10965-010-9470-9
[154]  Kim, S.J., Shin, S.R., Lee, S.M., Kim, I.Y. and Kim, S.I. (2004) Electromechanical Properties of Hydrogels Based on Chitosan and Poly(Hydroxyethyl Methacrylate) in NaCl Solution. Smart Materials and Structures, 13, 1036-1039.
https://doi.org/10.1088/0964-1726/13/5/008
[155]  Lee, C.K., Kim, S.J., Kim, S.I., Yi, B.J. and Han, S.Y. (2006) Preparation of Chitosan Microfibers Using Electro-Wet-Spinning and Their Electroactuation Properties. Smart Materials and Structures, 15, 607-611.
https://doi.org/10.1088/0964-1726/15/2/044
[156]  Twu, Y.K., Huang, H.I., Chang, S.Y. and Wand, S.L. (2003) Preparation and Sorption Activity of Chitosan/Cellulose Blend Beads. Carbohydrates Polymers, 54, 425-430.
https://doi.org/10.1016/j.carbpol.2003.03.001
[157]  Cai, Z. and Kim, J. (2009) Cellulose-Chitosan Interpenetrating Polymer Network for Electro-Active Paper Actuator. Journal of Applied Polymer Science, 114, 288-297.
https://doi.org/10.1002/app.30456
[158]  Sarasam, A.R., Krishnaswamy, R.K. and Madihally, S.V. (2006) Blending Chitosan with Polycaprolactone: Effects on Physicochemical and Antibacterial Properties. Biomacromolecules, 7, 1131-1138.
https://doi.org/10.1021/bm050935d
[159]  Yin, L., Fei, L., Cui, F., Tang, C. and Yin, C. (2007) Superporous Hydrogels Containing Poly(Acrylic Acid-co-Acrylamide)/O-Carboxymethyl Chitosan Interpenetrating Polymer Networks. Biomaterials, 28, 1258-1266.
https://doi.org/10.1016/j.biomaterials.2006.11.008
[160]  Sun, J. and Tan, H. (2013) Alginate-Based Biomaterials for Regenerative Medicine Applications. Materials, 6, 1285-1309.
https://doi.org/10.3390/ma6041285
[161]  Thakur, S., Sharma, B., Verma, A.J., Chaudhary, J., Tamulevicius, S. and Thakur, V.K. (2018) Recent Progress in Sodium Alginate Based Sustainable Hydrogels for Environmental Applications. Journal of Cleaner Production, 198, 143-159.
https://doi.org/10.1016/j.jclepro.2018.06.259
[162]  Pedrosa, P., Fiedler, P., Schinaia, L., Vasconcelos, B., Martins, A.C., Amaral, M.H., Comani, S., Haueisen, J. and Fonseca, C. (2017) Alginate-Based Hydrogels as an Alternative to Electrolytic Gels for Rapid EEG Monitoring and Easy Cleaning Procedures. Sensors and Actuators B, 247, 273-283.
https://doi.org/10.1016/j.snb.2017.02.164
[163]  Yang, J.S., Xie, Y.J. and He, W. (2011) Research Progress on Chemical Modification of Alginate: A Review. Carbohydrate Polymers, 84, 33-39.
https://doi.org/10.1016/j.carbpol.2010.11.048
[164]  Boontheekul, T., Kong, H. and Mooney, D. (2005) Controlling Alginate Gels Degradation Utilizing Partial Oxidation and Bimodal Molecular Weight Distribution. Biomaterials, 26, 2455-2465.
https://doi.org/10.1016/j.biomaterials.2004.06.044
[165]  Gomez, C.G., Rinaudo, M. and Villar, M.A. (2007) Oxidation of Sodium Alginate and Characterization of the Oxidized Derivatives. Carbohydrate Polymers, 67, 296-304.
https://doi.org/10.1016/j.carbpol.2006.05.025
[166]  Fan, L., Jiang, L., Xu, Y., Zhou, Y., Shen, Y., Xie, W., et al. (2011) Synthesis and Anticoagulant Activity of Sodium Alginate Sulfates. Carbohydrate Polymers, 83, 1797-1803.
https://doi.org/10.1016/j.carbpol.2010.10.038
[167]  Ronghua, H., Yumin, D. and Jianhong, Y. (2003) Preparation and in Vitro Anticoagulant Activities of Alginate Sulfate and Its Quaterized Derivatives. Carbohydrate Polymers, 52, 19-24.
https://doi.org/10.1016/S0144-8617(02)00258-8
[168]  Kang, H., Jeon, G., Lee, M. and Yang, J. (2002) Effectiveness Test of Alginate-Derived Polymeric Surfactants. Journal of Chemical Technology and Biotechnology, 77, 205-210.
https://doi.org/10.1002/jctb.550
[169]  Yu, Y., Leng, C., Liu, Z., Jia, F., Zheng, Y., Yuan, K. and Yan, S. (2014) Preparation and Characterization of Biosurfactant Based on Hydrophobically Modified Alginate. Colloid Journal, 76, 622-627.
https://doi.org/10.1134/S1061933X14050160
[170]  Liu, M.Z. and Cao, L.X. (2002) Preparation of a Superabsorbent Resistant to Saline Solution by Copolymerization of Acrylic Acid with Sodium Polymannuronate. Chinese Journal of Applied Chemistry, 19, 455-458.
[171]  Sen, G., Singh, R.P. and Pal, S. (2010) Microwave-Initiated Synthesis of Polyacrylamide Grafted Sodium Alginate: Synthesis and Characterization. Journal of Applied Polymer Science, 115, 63-71.
https://doi.org/10.1002/app.30596
[172]  Sand, A., Yadav, M. and Behari, K. (2010) Synthesis and Characterization of Alginate-g-Vinyl Sulfonic Acid with a Potassium Peroxydiphosphate/Thiourea System. Journal of Applied Polymer Science, 118, 3685-3694.
https://doi.org/10.1002/app.32447
[173]  Leonard, M., Rastello De Boisseson, M., Hubert, P., Dalencon, F. and Dellacherie, E. (2004) Hydrophobically Modified Alginate Hydrogels as Protein Carriers with Specific Controlled Release Properties. Journal of Controlled Release, 98, 395-405.
https://doi.org/10.1016/j.jconrel.2004.05.009
[174]  Broderick, E., Lyons, H., Pembroke, T., Byrne, H., Murray, B. and Hall, M. (2006) The Characterisation of a Novel Covalently Modified, Amphiphilic Alginate Derivative, Which Retains Gelling and Non-Toxic Properties. Journal of Colloid and Interface Science, 298, 154-161.
https://doi.org/10.1016/j.jcis.2005.12.026
[175]  Yan, H., Chen, X., Li, J., Feng, Y., Shi, Z., Wang, X., et al. (2016) Synthesis of Alginate Derivative via the Ugi Reaction and Its Characterization. Carbohydrate Polymers, 136, 757-763.
https://doi.org/10.1016/j.carbpol.2015.09.104
[176]  Yin, L., Fei, L., Tang, C. and Yin, C. (2007) Synthesis, Characterization, Mechanical Properties and Biocompatibility of Interpenetrating Polymer Network-Super-Porous Hydrogel Containing Sodium Alginate. Polymer International, 56, 1563-1571.
https://doi.org/10.1002/pi.2306
[177]  Omidian, H., Rocca, J.G. and Park, K. (2006) Elastic, Superporous Hydrogel Hybrids of Polyacrylamide and Sodium Alginate. Macromolecular Bioscience, 6, 703-710.
https://doi.org/10.1002/mabi.200600062

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133