全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Synchronizability of Two-Layer Cluster Ring Networks

DOI: 10.4236/cn.2019.112004, PP. 35-51

Keywords: Two-Layer Cluster Ring Network, Synchronizability, Interlayer Linking Weight, Interlayer Linking Fraction

Full-Text   Cite this paper   Add to My Lib

Abstract:

Multilayer network is a frontier direction of network science research. In this paper, the cluster ring network is extended to a two-layer network model, and the inner structures of the cluster blocks are random, small world or scale-free. We study the influence of network scale, the interlayer linking weight and interlayer linking fraction on synchronizability. It is found that the synchronizability of the two-layer cluster ring network decreases with the increase of network size. There is an optimum value of the interlayer linking weight in the two-layer cluster ring network, which makes the synchronizability of the network reach the optimum. When the interlayer linking weight and the interlayer linking fraction are very small, the change of them will affect the synchronizability.

References

[1]  Newman, M.E.J. (2003) The Structure and Function of Complex Networks. SIAM Review, 45, 167-256.
https://doi.org/10.1137/S003614450342480
[2]  Strogatz, S.H. (2001) Exploring Complex Networks. Nature, 410, 268-276.
https://doi.org/10.1038/35065725
[3]  Albert, R. and Barabsi, A.L. (2002) Statistical Mechanics of Complex Networks. Reviews of Modern Physics, 74, 47-97.
https://doi.org/10.1103/RevModPhys.74.47
[4]  Newman, M.E.J., Barabsi, A.L. and Watts, D.J. (2006) The Structure and Dynamics of Networks, Vol. 126. Princeton University Press, Princeton, 419-421.
[5]  Barabsi, A.L. and Albert, R. (1999) Emergence of Scaling in Random Networks. Science, 286, 509-512.
https://doi.org/10.1126/science.286.5439.509
[6]  Watts, D.J. and Strogatz, S.H. (1998) Collective Dynamics of “Small-World” Networks. Nature, 393, 440-442.
https://doi.org/10.1038/30918
[7]  Arenas, A., Diaz-Guilera, A., Kurths, J., et al. (2008) Synchronization in Complex Networks. Physics Reports, 469, 93-153.
https://doi.org/10.1016/j.physrep.2008.09.002
[8]  Barahona, M. and Pecora, L.M. (2002) Synchronization in Small-World Systems. Physical Review Letters, 89, Article ID: 054101.
https://doi.org/10.1103/PhysRevLett.89.054101
[9]  Wang, X.F. and Chen, G. (2002) Synchronization in Small-World Dynamical Networks. International Journal of Bifurcation and Chaos, 12, Article ID: 187C92.
[10]  Wang, X.F. and Chen, G. (2002) Synchronization in Scale-Free Dynamical Networks: Robustness and Fragility. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 49, 54-62.
[11]  Ichinomiya, T. (2004) Frequency Synchronization in Random Oscillator Network. Physical Review E, 70, Article ID: 026116.
https://doi.org/10.1103/PhysRevE.70.026116
[12]  Motter, A.E., Zhou, C. and Kurths, J. (2005) Network Synchronization, Diffusion, and the Paradox of Heterogeneity. Physical Review E, 71, Article ID: 016116.
https://doi.org/10.1103/PhysRevE.71.016116
[13]  Wei, X., Emenheiser, J., Wu, X., et al. (2018) Maximizing Synchronizability of Duplex Networks. Chaos, 28, Article ID: 013110.
https://doi.org/10.1063/1.5008955
[14]  Lu, J.N., Liu, H. and Chen, J. (2016) Synchronization in Complex Dynamical Networks. Higher Education Press, Beijing.
[15]  Lu, J.A., Zhang, Y., Chen, J., et al. (2014) Scalability Analysis of the Synchronizability for Ring or Chain Networks with Dense Clusters. Journal of Statistical Mechanics: Theory and Experiment, P03008.
[16]  Xu, M.M., Zhou, J., Lu, J., et al. (2015) Synchronizability of Two-Layer Networks. The European Physical Journal B, 88, 240.
https://doi.org/10.1140/epjb/e2015-60330-0
[17]  Wei, J., Wu, X., Lu, J.A., et al. (2018) Synchronizability of Duplex Regular Networks. EPL (Europhysics Letters), 120, Article ID: 20005.
[18]  Gomez, S., Diaz-Guilera, A., Gomez-Gardenes, J., et al. (2013) Diffusion Dynamics on Multiplex Networks. Physical Review Letters, 110, Article ID: 028701.
https://doi.org/10.1103/PhysRevLett.110.028701
[19]  Sole-Ribalta, A., De Domenico, M., Kouvaris, N.E., et al. (2013) Spectral Properties of the Laplacian of Multiplex Networks. Physical Review E, 88, Article ID: 032807.
https://doi.org/10.1103/PhysRevE.88.032807

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133