全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Dynamical Properties of the Superposition of Two Finite Trio Coherent States

DOI: 10.4236/jqis.2019.91005, PP. 98-109

Keywords: Entropy Squeezing, Atomic Wehrl Entropy, Marginal Atomic Q-Function

Full-Text   Cite this paper   Add to My Lib

Abstract:

In this contribution we study a superposition of two finite dimensional trio coherent states (FTCS). The state is regarded as a correlated three-mode state in finite dimensional bases. The framework of Pegg and Barnett formalism, and the phase distribution in addition to the Poissonian distribution are examined. It is shown that the eigenvalue of the difference of the photon number (the q-parameter) is responsible for the non-classical phenomenon. Furthermore, the quasi-probability distribution functions (the Wigner and Q-functions) are also discussed. In this case and for the Wigner function the non-classical behavior is only reported for the odd values of the q-parameter.

References

[1]  Glauber, R.J. (1963) Coherent and Incoherent States of the Radiation Field. Physical Review, 131, 2766-2788.
https://doi.org/10.1103/PhysRev.131.2766
[2]  Dodonov, V.V., Malkin, I.A. and Manko, V.I. (1974) Even and Odd Coherent States and Excitations of a Singular Oscillator. Physica, 72, 597.
[3]  Hillery, M., Connell, R.F.O., Scully, M.O. and Wigner, E.P. (1984) Distribution Functions in Physics: Fundamentals. Physics Reports, 106, 121-167.
https://doi.org/10.1016/0370-1573(84)90160-1
[4]  Walls, D.F. and Milburn, G.J. (1994) Quantum Optics. Springer, Heidelberg.
https://doi.org/10.1007/978-3-642-79504-6
[5]  Klauder, J.R. and Sudershan, E.C.G. (1968) Fundamentals of Quantum Optics. Benjamin, New York.
[6]  Perlomov, A. (1986) Generalized Coherent States and Their Applications. Springer, Berlin.
https://doi.org/10.1007/978-3-642-61629-7
[7]  Agarwal, G.S. (1988) Nonclassical Statistics of Fields in Pair Coherent States. Journal of the Optical Society of America B, 5, 1940-1947.
https://doi.org/10.1364/JOSAB.5.001940
[8]  Gou, S.C., Steinbach, J. and Knight, P.L. (1996) Vibrational Pair Cat States. Physical Review A, 54, 4315-4319.
https://doi.org/10.1103/PhysRevA.54.4315
[9]  An, N.B. and Duc, T.M. (2002) Trio Coherent States. Journal of Optics B: Quantum and Semiclassical Optics, 4, 80.
https://doi.org/10.1088/1464-4266/4/1/313
[10]  Obada, A.S.F., Salah, H.H., Darwish, M.A. and Khalil, E.M. (2005) Generalized Trio Coherent States. International Journal of Theoretical Physics, 44, 1347-1364.
https://doi.org/10.1007/s10773-005-4770-2
[11]  An, N.B. and Duc, T.M. (2002) Generation of Three-Mode Nonclassical Vibrational States of Ions. Physical Review A, 66, Article ID: 065401.
https://doi.org/10.1103/PhysRevA.66.065401
[12]  Obada, A.S.F. and Khalil, E.M. (2006) Generation and Some Non-Classical Properties of a Finite Dimensional Pair Coherent State. Optics Communications, 260, 19-24.
https://doi.org/10.1016/j.optcom.2005.09.080
[13]  Khalil, E.M. (2007) Superposition of the Finite Dimensional Pair Coherent State and Some Nonclassical Properties. International Journal of Theoretical Physics, 3, 9393.
[14]  Abdel-Khalek, S., Khalil, E.M. and Ali, S.I. (2008) Entanglement of a in a Finite Trio-Coherent State Two-Level Atom Papered. Laser Physics, 18, 2.
[15]  Gerry, C.C. and Grobe, R. (1995) Nonclassical Properties of Correlated Two-Mode Schrodinger Cat States. Physical Review A, 51, 1698.
https://doi.org/10.1103/PhysRevA.51.1698
[16]  Pegg, D.T. and Barnett, S.M. (1989) Physical Review A, 39, 1665.
[17]  Loudon, R. (1983) The Quantum Theory of Light. Clarendon Press, Oxford, 709.
[18]  Yi, H., Nguyen, B.A. and Kim, J. (2004) K-Dimensional Trio Coherent States.
[19]  Cahill, E. and Glauber, R.J. (1969) Physical Review, 177, 1882.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133