全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

In Silico and in Vitro Approach for the Understanding of the Xanthine Oxidase Inhibitory Activity of Uruguayan Tannat Grape Pomace and Propolis Poliphenols

DOI: 10.4236/jbpc.2019.101001, PP. 1-14

Keywords: Propolis, Tannat Grape Pomace, Xanthine Oxidase Inhibition, Polyphenols, Functional Foods

Full-Text   Cite this paper   Add to My Lib

Abstract:

The use of food additives with xanthine oxidase (XO) inhibitory activity offers an alternative approach to hyperuricemic and gout disease treatment, and provides an example of antioxidant nutraceutics. The in vitro and in silico XO inhibitory activity of polyphenols from Uruguayan Tannat grape pomaces and propolis extracts was evaluated as well as the scavenging capacity of said compounds. When comparing propolis and grape pomace samples, the in vitro studies demonstrated that polyphenols extracted from propolis are more active as free radical scavengers than those from Tannat grape pomace. Both natural products effectively inhibited XO but the capacity of phenols present in GP is higher than the one present in P. The high content of anthocyanins in GP, absent in P, could account for this observation. In silico assays allowed us to determine relevant ligand-receptor interactions between polyphenols, from a database built with previously reported polyphenols from both natural products, and the active site of XO. The in silico results showed that compound (E)-isoprenylcaffeate from propolis was the best potential XO inhibitor displaying hydrophobic aromatic interaction between the conjugated ring of the caffeate moiety and polar interactions between hydroxyl groups from caffeate with the active site polar residues. Among grape pomaces, the Cyanidin-3-O-(6-(E)-p-coumaroyl)-glucoside was the best XO inhibitor; its moiety oxychromenyl being relevant to the docking stabilization. All these results lead us to propose Uruguayan propolis and Tannat grape pomace extracts as food additives as well as phytopharmaceuticals to decrease the uric acid levels in gout disease and to act against oxidative stress.

References

[1]  Lin, S., Zhang, G., Liao, Y. and Pan, J. (2015) Inhibition of Chrysin on Xanthine Oxidase Activity and Its Inhibition Mechanism.International Journal of Biological Macromolecules, 81, 274-282.
https://doi.org/10.1016/j.ijbiomac.2015.08.017
[2]  Ojha, R., Singh, J., Ojha, A., Singh, H., Sharma, S. and Nepali, K. (2017) An Updated Patent Review: Xanthine Oxidase Inhibitors for the Treatment of Hyperuricemia and Gout (2011-2015). Expert Opinion on Therapeutic Patents, 27, 311-345.
https://doi.org/10.1080/13543776.2017.1261111
[3]  Maritim, A.C., Sanders, R.A. and Watkins, J.B. (2003) Diabetes, Oxidative Stress, and Antioxidants: A Review. Journal of Biochemical and Molecular Toxicology, 17, 24-38.
https://doi.org/10.1002/jbt.10058
[4]  Uttara, B., Singh, A.V., Zamboni, P. and Mahajan, R.T. (2009) Oxidative Stress and Neurodegenerative Diseases: A Review of Upstream and Downstream Antioxidant Therapeutic Options. Current Neuropharmacology, 7, 65-74.
https://doi.org/10.2174/157015909787602823
[5]  Adly, A.A.M. (2010) Oxidative Stress and Disease: An Updated Review. Research Journal of Immunology, 3, 129-145.
https://doi.org/10.3923/rji.2010.129.145
[6]  Liochev, S.I. (2013) Reactive Oxygen Species and the Free Radical Theory of Aging. Free Radical Biology and Medicine, 60, 1-4.
https://doi.org/10.1016/j.freeradbiomed.2013.02.011
[7]  Qian, X., Nie, X., Yao, W., Klinghammer, K., Sudhoff, H., Kaufmann, A.M. and Albers, A.E. (2018) Reactive Oxygen Species in Cancer Stem Cells of Head and Neck Squamous Cancer. Seminars in Cancer Biology, 53, 248-257.
https://doi.org/10.1016/j.semcancer.2018.06.001
[8]  Dong, Y., Huang, H., Zhao, M., Sun-Waterhouse, D., Lin, L. and Xiao, C. (2016) Mechanisms Underlying the Xanthine Oxidase Inhibitory Effects of Dietary Flavonoids Galangin and Pinobanksin. Journal of Functional Foods, 24, 26-36.
https://doi.org/10.1016/j.jff.2016.03.021
[9]  Hille, R. and Nishino, T. (1995) Flavoprotein Structure and Mechanism. Xanthine Oxidase and Xanthine Dehydrogenase. FASEB Journal, 9, 995-1003.
https://doi.org/10.1096/fasebj.9.11.7649415
[10]  Umamaheswari, M., Madeswaran, A. and Asokkumar, K. (2013) Virtual Screening Analysis and In-Vitro Xanthine Oxidase Inhibitory Activity of Some Commercially Available Flavonoids. Iranian Journal of Pharmaceutical Research, 12, 317-323.
[11]  Wang, Y., Zhang, G., Pan, J. and Gong, D. (2015) Novel Insights into the Inhibitory Mechanism of Kaempferol on Xanthine Oxidase. Journal of Agricultural and Food Chemistry, 63, 526-534.
https://doi.org/10.1021/jf505584m
[12]  Santi, M.D., PaulinoZunini, M., Vera, B., Bouzidi, C., Dumontet, V., Abin-Carriquiry, A. and Ortega, M.G. (2018) Xanthine Oxidase Inhibitory Activity of Natural and Hemisynthetic Flavonoids from Gardenia oudiepe (Rubiaceae) in Vitro and Molecular Docking Studies. European Journal of Medicinal Chemistry, 143, 577-582.
https://doi.org/10.1016/j.ejmech.2017.11.071
[13]  Zhang, C., Wang, R., Zhang, G. and Gong, D. (2018) Mechanistic Insights into the Inhibition of Quercetin on Xanthine Oxidase. International Journal of Biological Macromolecules, 112, 405-412.
https://doi.org/10.1016/j.ijbiomac.2018.01.190
[14]  Cao H., Pauff J.M. and Hille R. (2014) X-Ray Crystal Structure of a Xanthine Oxidase Complex with the Flavonoid Inhibitor Quercetin. Journal of Natural Products, 77, 1693-1699.
https://doi.org/10.1021/np500320g
[15]  Silva, V., Genta, G., Moler, M., Masner, M., Thomson, L., Romero, R.R., Fernandes, D., Laurindo, F., Heinzen, H., Fierro, W. and Denicola, A. (2011) Antioxidant Activity of Uruguayan Propolis. In Vitro and Cellular Assays. Journal of Agricultural and Food Chemistry, 59, 6430-6437.
https://doi.org/10.1021/jf201032y
[16]  Yoshizumi, K., Nishioka, N. and Tsuji, T. (2005) Xanthine Oxidase Inhibitory Activity and Hypouricemia Effect of Propolis in Rats. Journal of the Pharmaceutical Society of Japan, 125, 315-321.
https://doi.org/10.1248/yakushi.125.315
[17]  Yu, J. andAhmedna, M. (2013) Functional Components of Grape Pomace: Their Composition, Biological Properties and Potential Applications. International Journal of Food Science and Technology, 48, 221-237.
https://doi.org/10.1111/j.1365-2621.2012.03197.x
[18]  Dumitriu, D., Peinado, R.A., Peinado, J. and De Lerma, N.L. (2015) Grape Pomace Extract Improves the in Vitro and in Vivo Antioxidant Properties of Wines from Sun Light Dried Pedro Ximénez Grapes. Journal of Functional Foods, 17, 380-387.
https://doi.org/10.1016/j.jff.2015.06.003
[19]  Amico, V., Napoli, E.M., Renda, A., Ruberto, G., Spatafora, C. and Tringali, C. (2004) Constituents of Grape Pomace from the Sicilian Cultivar “NerelloMascalese”. Food Chemistry, 88, 599-607.
https://doi.org/10.1016/j.foodchem.2004.02.022
[20]  Boido, E., Alcalde-Eon, C., Carrau, F., Dellacassa, E. and Rivas-Gonzalo, J.C. (2006) Aging Effect on the Pigment Composition and Color of Vitis vinifera L. Cv. Tannat Wines. Contribution of the Main Pigment Families to Wine Color. Journal of Agricultural and Food Chemistry, 54, 6692-6704.
https://doi.org/10.1021/jf061240m
[21]  Silva, V., Genta, G., Moller, M.N., Masner, M., Thomson, L., Romero, N. and Dajas, F. (2006) Changes in Antioxidant Capacity of Tannat Red Wines during Early Maturation. Journal of Agricultural and Food Chemistry, 59, 6430-6437.
https://doi.org/10.1021/jf201032y
[22]  Echeverry, C., Arredondo, F., Martínez, M., Abin-Carriquiry, J.A., Midiwo, J. and Dajas, F. (2014) Antioxidant Activity, Cellular Bioavailability, and Iron and Calcium Management of Neuroprotective and Nonneuroprotective Flavones. Neurotoxicity Research, 27, 31-42.
https://doi.org/10.1007/s12640-014-9483-y
[23]  Alvareda, E., Miranda, P., Espinosa, V., Pardo, H., Aguilera, S. and Paulino Zunini, M. (2015) Antiinflamatory Activity of Phenolic Compounds Extracted from Uruguayan Propolis and Grape. Journal of Biomolecular Structure and Dynamics 33, 129.
https://doi.org/10.1080/07391102.2015.1032833
[24]  Paulino, M., Alvareda, E., Iribarne, F., Miranda, P., Espinosa, V., Aguilera, S. and Pardo, H. (2016) Toward the Understanding of the Molecular Basis for the Inhibition of COX-1 and COX-2 by Phenolic Compounds Present in Uruguayan Propolis and Grape Pomace. Journal of Biomolecular Structure and Dynamics, 34, 2643-2657.
https://doi.org/10.1080/07391102.2015.1124808
[25]  Singleton, V.L., Orthofer, R. and Lamuela-Raventos, R.M. (1999) Analysis of Total Phenols and Other Oxidation Substrates and Antioxidants by Means of Folin-Ciocalteau Reagent. Methods in Enzimology, 299, 153-178.
https://doi.org/10.1016/S0076-6879(99)99017-1
[26]  Shimada, K., Fujikawa, K., Yahara, K. and Nakamura, T. (1992) Antioxidative Properties of Xanthan on the Autoxidation of Soybean Oil in Cyclodextrin Emulsion. Journal of Agricultural and Food Chemistry, 40, 945-948.
https://doi.org/10.1021/jf00018a005
[27]  Molecular Operating Environment (MOETM) (2015) Chemical Computing Group Inc., Montreal.
[28]  Farre, R., Frasquet, I. and Sanchez, A. (2004) El propolis y la salud. Ars Pharmaceutica, 45, 21-43.
[29]  Paulino-Zunini, M., Rojas, C., Depaula, S., Elingold, I., Alvareda, E., Casanova, M.B., Iribarne, F. and Dubin, M. (2010) Phenolic Contents and Antioxidant Activity in Central Southern Uruguayan Propolis Extracts. Journal of the Chilean Chemical Society, 551, 141-146.
https://doi.org/10.4067/S0717-97072010000100033
[30]  Alencar, S.M., Oldoni, T.L., Castro, M.L., Cabral, I.S., Costa-Neto, C.M., Cury, J.A., Rosalen, P.L. and Ikegaki, M. (2007) Chemical Composition and Biological Activity of a New Type of Brazilian Propolis: Red Propolis. Journal of Ethnopharmacology, 113, 278-283.
https://doi.org/10.1016/j.jep.2007.06.005
[31]  Falcao, S.I., Vilas-Boas, M., Estevinho, L.M., Barros, C., Domingues, M.R. and Cardoso, S.M. (2010) Phenolic Characterization of Northeast Portuguese Propolis: Usual and Unusual Compounds. Analytical and Bioanalytical Chemistry, 396, 887-897.
https://doi.org/10.1007/s00216-009-3232-8
[32]  Halgren, T.A. (1999) MMFF VI. MMFF94s Option for Energy Minimization Studies. Journal of Computational Chemistry, 20, 720-729.
https://doi.org/10.1002/(SICI)1096-987X(199905)20:7<720::AID-JCC7>3.0.CO;2-X
[33]  Hille, R. (2006) Structure and Function of Xanthine Oxidoreductase. European Journal of Inorganic Chemistry, 2006, 1913-1926.
https://doi.org/10.1002/ejic.200600087
[34]  Vera, B., Vázquez, K., Mascayano, C., Tapia, R.A., Espinosa, V., Soto-Delgado, J., Salas, C.O. and Paulino, M. (2016) Structural Analysis and Molecular Docking of Trypanocidal Aryloxy-Quinones in Trypanothione and Glutathione Reductases: A Comparison with Biochemical Data. Journal of Biomolecular Structure and Dynamics, 35, 1785-1803.
https://doi.org/10.1080/07391102.2016.1195283
[35]  Haidari, F., Mohammad Shahi, M., Keshavarz, S.A. and Rashidi, M.R. (2009) Inhibitory Effects of Tart Cherry (Prunuscerasus) Juice on Xanthine Oxidoreductase Activity and Its Hypouricemic and Antioxidant Effects on Rats. Malaysian Journal of Nutrition, 15, 53-64.
[36]  Braunlich, M., Slimestad, R., Wangensteen, H., Brede, C., Malterud, K.E. and Barsett, H. (2013) Extracts, Anthocyanins and Procyanidins from Aronia melanocarpa as Radical Scavengers and Enzyme Inhibitors. Nutrients, 5, 663-678.
https://doi.org/10.3390/nu5030663
[37]  Zhang, Z.C., Wang, H., Zhou, Q., Hu, B., Wen, J.H. and Zhang, J.L. (2017) Screening of Effective Xanthine Oxidase Inhibitors in Dietary Anthocyanins from Purple Sweet Potato (Ipomoea batatas L. Cultivar Eshu No. 8) and Deciphering of the Underlying Mechanisms in Vitro. Journal of Functional Foods, 36, 102-111.
https://doi.org/10.1016/j.jff.2017.06.048
[38]  Huang, S., Zhang, C.-P., Wang, K., Li, G. and Hu, F.-L. (2014) Recent Advances in the Chemical Composition of Propolis. Molecules, 19, 19610-19632.
https://doi.org/10.3390/molecules191219610
[39]  Echeverry, C., Ferreira, M., Reyes-Parada, M., Abin-Carriquiry, J.A., Blasina, F., González-Neves, G. and Dajas, F. (2005) Changes in Antioxidant Capacity of Tannat Red Wines during Early Maturation. Journal of Food Engineering, 69, 147-154.
https://doi.org/10.1016/j.jfoodeng.2004.08.005
[40]  Shin, J.-H., Chun, K.S., Na, Y.-G., Song, K.-H., Kim, S., Lim, J.-S. and Kim, G.-H. (2015) Oxidative Medicine and Cellular Longevity, 15, Article ID: 906787.
[41]  Wróblewski, K., Muhandiram, R., Chakrabartty, A. and Bennick, A. (2001) The Molecular Interaction of Human Salivary Histatins with Polyphenolic Compounds. European Journal of Biochemistry, 268, 4384-4397.
https://doi.org/10.1046/j.1432-1327.2001.02350.x

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133