Antimicrobial peptides are promising therapeutic
agents in view of increasing resistance to conventional antibiotics.
Antimicrobial peptides usually fold inα-helical, β-sheet, and
extended/random-coil structures. Theα-helical antimicrobial peptides are often unstructured in aqueous
solution but become structured on bacterial membrane. Theα-helical structure allows the partitioning into bacterial membrane.
Therefore it is important to understand the mechanism of unfolding and
refolding ofα-helical structure in antimicrobial peptides. It is not very easy to
obverse and study the process of unfolding and refolding ofα-helical antimicrobial peptides because of their rapidity. Therefore,
molecular simulation provides a way to observe and explain this phenomenon.
Plantaricin A is a 26 amino-acid antimicrobial pheromone peptide and can
spontaneously unfold and refold under physiological condition. This study
demonstrated the unfolding and refolding of plantaricin A by means of molecular
simulation, and its mechanism was discussed with its implication to the
Levinthal paradox.
References
[1]
Reddy, K.V., Yedery, R.D. and Aranha, C. (2004) Antimicrobial Peptides: Premises and Promises. International Journal of Antimicrobial Agents, 24, 536-547. https://doi.org/10.1016/j.ijantimicag.2004.09.005
[2]
Mahlapuu, M., Hakansson, J., Ringstad, L. and Bjorn, C. (2016) Antimicrobial Peptides: An Emerging Category of Therapeutic Agents. Frontiers in Cellular and Infection Microbiology, 6, 194. https://doi.org/10.3389/fcimb.2016.00194
[3]
Takahashi, D., Shukla, S.K., Prakash, O. and Zhang, G. (2010) Structural Determinants of Host Defense Peptides for Antimicrobial Activity and Target Cell Selectivity. Biochimie, 92, 1236-1241. https://doi.org/10.1016/j.biochi.2010.02.023
[4]
Aguda, A.H., Panwar, P., Du, X., Nguyen, N.T., Brayer, G.D. and Bromme, D. (2014) Structural Basis of Collagen Fiber Degradation by Cathepsin K. Proceedings of the National Academy of Sciences of the United States of America, 111, 17474-17479. https://doi.org/10.1073/pnas.1414126111
[5]
Pasupuleti, M., Schmidtchen, A. and Malmsten, M. (2012) Antimicrobial Peptides: key Components of the Innate Immune System. Critical Reviews in Biotechnology, 32, 143-171. https://doi.org/10.3109/07388551.2011.594423
[6]
Wang, G., Li, X. and Wang, Z. (2016) APD3: The Antimicrobial Peptide Database as a Tool for Research and Education. Nucleic Acids Research, 44, D1087-D1093. https://doi.org/10.1093/nar/gkv1278
[7]
Nguyen, L.T., Haney, E.F. and Vogel, H.J. (2011) The Expanding Scope of Antimicrobial Peptide Structures and Their Modes of Action. Trends in Biotechnology, 29, 464-472. https://doi.org/10.1016/j.tibtech.2011.05.001
[8]
Sarroukh, R., Cerf, E., Derclaye, S., Dufrêne, Y.F., Goormaghtigh, E., Ruysschaert, J.M. and Raussens, V. (2011) Transformation of Amyloid β (1-40) Oligomers into Fibrils Is Characterized by a Major Change in Secondary Structure. Cellular and Molecular Life Sciences, 68, 1429-1438. https://doi.org/10.1007/s00018-010-0529-x
[9]
Stephenson, K., Carter, N.M., Harwood, C.R., Petit-Glatron, M.F. and Chambert, R. (1998) The Influence of Protein Folding on Late Stages of the Secretion of Alpha-Amylases from Bacillus subtilis. FEBS Letters, 430, 385-389. https://doi.org/10.1016/S0014-5793(98)00698-X
[10]
Yan, S. and Wu, G. (2017) Bottleneck in Secretion of α-Amylase in Bacillus subtilis. Microbial Cell Factories, 16, 124. https://doi.org/10.1186/s12934-017-0738-1
[11]
Nissen-Meyer, J., Larsen, A.G., Sletten, K., Daeschel, M. and Nes, I.F. (1993) Purification and Characterization of Plantaricin A, a Lactobacillus plantarum Bacteriocin Whose Activity Depends on the Action of Two Peptides. Journal of General Microbiology, 139, 1973-1978. https://doi.org/10.1099/00221287-139-9-1973
[12]
Kinjo, A.R., Bekker, G.J., Suzuki, H., Tsuchiya, Y., Kawabata, T., Ikegawa, Y. and Nakamura, H. (2017) Protein Data Bank Japan (PDBj): Updated User Interfaces, Resource Description Framework, Analysis Tools for Large Structures. Nucleic Acids Research, 45, D282-D288. https://doi.org/10.1093/nar/gkw962
[13]
Kristiansen, P.E., Fimland, G., Mantzilas, D. and Nissen-Meyer, J. (2005) Structure and Mode of Action of the Membrane-Permeabilizing Antimicrobial Peptide Pheromone Plantaricin A. Journal of Biological Chemistry, 280, 22945-22950. https://doi.org/10.1074/jbc.M501620200
[14]
Humphrey, W., Dalke, A. and Schulten, K. (1996) VMD—Visual Molecular Dynamics. Journal of Molecular Graphics and Modelling, 14, 33-38. https://doi.org/10.1016/0263-7855(96)00018-5
[15]
Phillips, J.C., Braun, R., Wang, W., Gumbart, J., Tajkhorshid, E., Villa, E., Chipot, C., Skeel, R.D., Kalé, L. and Schulten, K. (2005) Scalable Molecular Dynamics with NAMD. Journal of Computational Chemistry, 26, 1781-1802. https://doi.org/10.1002/jcc.20289
[16]
MacKerell, Jr. A.D., Bashford, D., Bellott, M., Dunbrack, R.L., Evanseck, J.D., Field, M,J., Fischer, S., Gao, J., Guo, H., Ha, S., Joseph-McCarthy, D., Kuchnir, L., Kuczera, K., Lau, F.T., Mattos, C., Michnick, S., Ngo, T., Nguyen, D.T., Prodhom, B., Reiher, W.E., Roux, B., Schlenkrich, M., Smith, J.C., Stote, R., Straub, J., Watanabe, M., Wiórkiewicz-Kuczera, J., Yin, D. and Karplus, M. (1998) All-Atom Empirical Potential for Molecular Modeling and Dynamics Studies of Proteins. Journal of Physical Chemistry B, 102, 3586-3616. https://doi.org/10.1021/jp973084f
[17]
Park, S. and Saven, J.G. (2006) Simulation of pH-Dependent Edge Strand Rearrangement in Human β-2 Microglobulin. Protein Science, 15, 200-207. https://doi.org/10.1110/ps.051814306
[18]
University of Illinois at Urbana-Champaign, NIH Resource for Macromolecular Modeling and Bioinformatics Bechman Institute, NAMD Tutorial Windows Version. http://www.ks.uiuc.edu/Training/Tutorials/
[19]
Shrivastava, I.H. and Sansom, M.S. (2000) Simulations of Ion Permeation through a Potassium Channel: Molecular Dynamics of KcsA in a Phospholipid Bilayer. Biophysical Journal, 78, 557-570. https://doi.org/10.1016/S0006-3495(00)76616-1
[20]
Pace, C.N. and Scholtz, J.M. (1998) A Helix Propensity Scale Based on Experimental Studies of Peptides and Proteins. Biophysical Journal, 75, 422-427. https://doi.org/10.1016/S0006-3495(98)77529-0
[21]
Legon, A.C. and Millen, D.J. (1987) Angular Geometries and Other Properties of Hydrogen-Bonded Dimers: A Simple Electrostatic Interpretation of the Success of the Electron-Pair Model. Chemical Society Reviews, 16, 467. https://doi.org/10.1039/cs9871600467
[22]
Creighton, T.E. (1992) Protein Folding up the Kinetic Pathway. Nature, 356, 194-195. https://doi.org/10.1038/356194a0
[23]
Wegele, H., Müller, L. and Buchner, J. (2004) Hsp70 and Hsp90—A Relay Team for Protein Folding. Reviews of Physiology Biochemistry and Pharmacology, 151, 1-44. https://doi.org/10.1007/s10254-003-0021-1
[24]
Lau, K.F. and Dill, K.A. (1989) A Lattice Statistical Mechanics Model of the Conformation and Sequence Spaces of Proteins. Macromolecules, 22, 3986-3997. https://doi.org/10.1021/ma00200a030
[25]
Yan, S. and Wu, G. (2012) Analysis on Folding of Misgurin Using 2-Dimensional HP Model. Proteins: Structure, Function, and Bioinformatics, 80, 764-773. https://doi.org/10.1002/prot.23233
[26]
Yan, S. and Wu, G. (2012) Detailed Folding Structures of Kappa-Conotoxin RIIIJ and Its Mutageneses Obtained from 2-Dimensional HP Model. Protein & Peptide Letters, 19, 567-572. https://doi.org/10.2174/092986612800190982
[27]
Yan, S. and Wu, G. (2012) Detailed Folding Structures of M-Lycotoxin-Hc1a and Its Mutageneses Using 2-Dimensional HP Model. Molecular Simulation, 38, 809-822. https://doi.org/10.1080/08927022.2012.654473
[28]
Nandi, T., B-Rao, C. and Ramachandran, S. (2002) Comparative Genomics Using Data Mining Tools. Journal of Biosciences, 27, 15-25. https://doi.org/10.1007/BF02703680
[29]
Leopold, P.E., Montal, M. and Onuchic, J.N. (1992) Protein Folding Funnels: A Kinetic Approach to the Sequence-Structure Relationship. Proceedings of the National Academy of Sciences of the United States of America, 89, 8721-8725. https://doi.org/10.1073/pnas.89.18.8721
[30]
Onuchic, J.N., Luthey-Schulten, Z. and Wolynes, P.G. (1997) Theory of Protein Folding: The Energy Landscape Perspective. Annual Review of Physical Chemistry, 48, 545-600. https://doi.org/10.1146/annurev.physchem.48.1.545
[31]
Zhao, H., Sood, R., Jutila, A., Bose, S., Fimland, G., Nissen-Meyer, J. and Kinnunen, P.K. (2006) Interaction of the Antimicrobial Peptide Pheromone Plantaricin A with Model Membranes: Implications for a Novel Mechanism of Action. Biochimica et Biophysica Acta, 1758, 1461-1474. https://doi.org/10.1016/j.bbamem.2006.03.037
[32]
Rutkowski, D.T., Ott, C.M., Polansky, J.R. and Lingappa, V.R. (2003) Signal Sequences Initiate the Pathway of Maturation in the Endoplasmic Reticulum Lumen. Journal of Biological Chemistry, 278, 30365-30372. https://doi.org/10.1074/jbc.M302117200
[33]
Chan, H.S., Zhang, Z., Wallin, S. and Liu, Z.R. (2011) Cooperatively, Local-Non-local Coupling, and Nonnative Interactions: Principles of Protein Folding from Coarse-Grained Models. Annual Review of Physical Chemistry, 62, 301-326. https://doi.org/10.1146/annurev-physchem-032210-103405
[34]
Weber, W., Hünenberger, P.H. and McCammon, J.A. (2000) Molecular Dynamics Simulations of a Polyalanine Octapeptide under Ewald Boundary Conditions: Influence on Artificial Periodicity of Peptide Conformation. Journal of Physical Chemistry B, 104, 3668-3675. https://doi.org/10.1021/jp9937757
[35]
Ansari, A., Kuznetsov, S.V. and Shen, Y. (2001) Configurational Diffusion down a Folding Funnel Describes the Dynamics of DNA Hairpins. Proceedings of the National Academy of Sciences of the United States of America, 98, 7771-7776. https://doi.org/10.1073/pnas.131477798
[36]
Fujiwara, Y., Kurokawa, T., Takeshita, K., Kobayashi, M., Okochi, Y., Nakagawa, A. and Okamura, Y. (2012) The Cytoplasmic Coiled-Coil Mediates Cooperative Gating Temperature Sensitivity in the Voltage-Gated H (+) Channel Hv1. Nature Communications, 3, 816. https://doi.org/10.1038/ncomms1823
[37]
Nymeyer, H., García, A.E. and Onuchic, J.N. (1998) Folding Funnels and Frustration in Off-Lattice Minimalist Protein Landscapes. Proceedings of the National Academy of Sciences of the United States of America, 95, 5921-5828. https://doi.org/10.1073/pnas.95.11.5921
[38]
Laurents, D.V. and Baldwin, R.L. (1998) Protein Folding: Matching Theory and Experiment. Biophys Journal, 75, 428-434. https://doi.org/10.1016/S0006-3495(98)77530-7
[39]
Dill, K.A. and MacCallum, J.L. (2012) The Protein-Folding Problem, 50 Years on. Science, 338, 1042-1046. https://doi.org/10.1126/science.1219021
[40]
Lindorff-Larsen, K., Piana, S., Dror, R.O. and Shaw, D.E. (2011) How Fast-Folding Proteins Fold. Science, 334, 517-520. https://doi.org/10.1126/science.1208351
[41]
Levinthal, C. (1968) Are There Pathways for Protein Folding? Journal de Chimie Physique et de Physico-Chimie Biologique, 65, 44-45. https://doi.org/10.1051/jcp/1968650044
[42]
Tompa, P. and Rose, G.D. (2011) The Levinthal Paradox of the Interactome. Protein Science, 20, 2074-2079. https://doi.org/10.1002/pro.747
[43]
Zenk, J. and Schulman, R. (2004) An Assembly Funnel Makes Biomolecular Complex Assembly Efficient. PLoS ONE, 9, e111233. https://doi.org/10.1371/journal.pone.0111233
[44]
Grater, F., Shen, J., Jiang, H., Gautel, M. and Grubmüller, H. (2005) Mechanically Induced Titin Kinase Activation Studied by Force-Probe Molecular Dynamics Simulations. Biophysical Journal, 88, 790-804. https://doi.org/10.1529/biophysj.104.052423
[45]
Stumpe, M.C. and Grubmüller, H. (2007) Aqueous Urea Solutions: Structure, Energetics, and Urea Aggregation. Journal of Physical Chemistry B, 111, 6220-6228. https://doi.org/10.1021/jp066474n
[46]
Steel, B.C., McKenzie, D.R., Bilek, M.M., Nosworthy, N.J. and dos Remedios, C.G. (2006) Nanosecond Responses of Proteins to Ultrahigh Temperature Pulses. Biophysical Journal, 91, L66-L68. https://doi.org/10.1529/biophysj.106.090944
[47]
Schafer, L.V., Müller, E.M., Gaub, H.E. and Grubmüller, H. (2007) Elastic Properties of Photoswitchable Azobenzene Polymers from Molecular Dynamics Simulations. Angewandte Chemie International Edition, 46, 2232-2237. https://doi.org/10.1002/anie.200604595
[48]
Larios, E., Li, J.S., Schulten, K., Kihara, H. and Gruebele, M. (2004) Multiple Probes Reveal a Native-Like Intermediate during Low-Temperature Refolding of Ubiquitin. Journal of Molecular Biology, 340, 115-125. https://doi.org/10.1016/j.jmb.2004.04.048
[49]
Liu, Y., Prigozhin, M.B., Schulten, K. and Gruebele, M. (2014) Observation of Complete Pressure-Jump Protein Refolding in Molecular Dynamics Simulation and Experiment. Journal of the American Chemical Society, 136, 4265-4272. https://doi.org/10.1021/ja412639u