This
paper shows the results of the assessment of impairment suffered by elements of
electronic equipment by environmental effects in different climatic zones of
Mexico. For this study, evaluated
devices were evaluated that
are mostly exposed under different climatic conditions of operation, to
determine the degree of damage suffered which leads to malfunction, reduced
service life and loss of information in some cases. The main contribution is to identify the causes of
the deterioration to delay the effect of atmospheric corrosion deterioration in
electronic components. The Mexican Republic has a wide range of climates and
subclimates over its territory, sampling was performed for each one of the most
representative regions, by their nature tend to be more conducive to the
release of corrosive effect on the computer and electronic devices. For the
determination of existing impairment in electronic equipment, a methodology is
proposed for the evaluation of samples taken from each
region, determining the degree of corrosion that exists in these devices. It
should be noted that according to the literature, the main pollutants that lead
to the deterioration caused by corrosive environmental phenomena are SO2,
NOx, CO, CO2, coupled with the presence of ozone and
chloride, characteristic of the coastal region, combined with the percent
relative humidity (% HR), and temperature cycles as reported by environmental
monitoring systems in Mexico. With the study of atmospheric corrosivity in
electronic devices has been determined: 1) Design and operation of chamber to
accelerated atmospheric corrosion testing. 2) Identification of electronic
components with increased susceptibility to corrosive phenomena under typical
environmental different regions of Mexico. 3) Correlation of damage suffered in
electronic equipment under typical operating conditions and accelerated tests.
4) Determining the degree of atmospheric corrosion on electronic equipment. 5) Construction
of atmospheric corrosivity map for Mexico in electronic devices.
References
[1]
Zakipour, S., Tidblad, J. and Leygraf, C. (1997) Atmospheric Corrosion Effects of SO2, NO2, and O3. Journal of the Electro-chemical Society, 144, 3513-3517.
[2]
Instituto Nacional de Estadística, Geografía e Informática (INEGI), Información Geográfica, 2008.
[3]
Ortiz, A., et al. (2007) Estudio del Deterioro por Corrosión Atmosférica en Discos Duros y Cabezas de Lectura/Escritura. Memorias del XIII Congreso Internacional de la SOMIM.
[4]
Arroyave, C. and Morcillo, M. (1995) The Effect of Nitrogen Oxides in Atmospheric Corrosion of Metals. Corrosion Science, 37, 293-305.
[5]
Chen, Z.Y., Zakipour, S., Persson, D. and Leygraf, C. (2005) Combined Effects of Gaseous Pollutants and Sodium Chloride Particleson the Atmospheric Corrosion of Copper. Corrosion, 61, 1023-1034.
[6]
Atlas Mapas de Climas en México, Instituto De Geografía UNAM, 2017.
[7]
(2018) Perspectivas para el medio ambiente. FAO. http://www.fao.org/3/y3557s/y3557s05.pdf
[8]
Norma ISO 9223:2012. Corrosion of Metals and Alloys—Corrosivity of Atmospheres—Classification. International Standard Organization, 2012.
[9]
García, E. (2004) Modificaciones al sistema de clasificación climática de Koppen Para adaptarlo a las condiciones de la República Mexicana. 8va Edición, Instituto de Geografía UNAM.
[10]
Climatología en México (2019). http://www.inegi.org.mx/
[11]
Ortiz, A., et al. (2002) Metodología para la Simulación Acelerada del Deterioro que por Corrosión Atmosférica se Presenta en Equipo Electrónico. Ingeniería Investigación y Desarrollo, III, 145-156.
[12]
Ortiz, A., et al. (2005) Análisis del deterioro que por corrosión atmosférica se presenta en sistemas de almacenamiento magnético de datos. Memorias del XI Congreso Internacional de la SOMIM.
[13]
Bhushan, B. (2002) Modern Tribology Handbook: Materials, Coating and Industrial Applications. Vol. 2. CRC Press, Boca Raton, London, New York.
[14]
Cerrud, S., Jacobo, V., Ortiz, A. and Schouwenaars, R. (2003) Corrosión y Protección. Facultad de Ingeniería UNAM, México.
[15]
Mariaca, R.L., Genesca, J. and Uruchurtu, Ch.J. (1999) Corrosividad Atmosférica, Plaza y Valdez Editores—UNAM.
[16]
Sistema Nacional de Información de la Calidad del Aire (2018). https://sinaica.inecc.gob.mx/
[17]
Prado, O., et al. (2010) Failure Analysis of Storage Data Magnetic Systems. Revista de Ingeniería Investigación y Tecnología, XI, 421-433.