全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Prediction of Criminal Suspects Based on Association Rules and Tag Clustering

DOI: 10.4236/jsea.2019.123003, PP. 35-50

Keywords: FP-Growth, Association Rule, DBSCAN, Tag Clustering, Criminal Suspects

Full-Text   Cite this paper   Add to My Lib

Abstract:

To date, not many studies have been conducted on criminal prediction. In this study, the criminal data related to city S is divided into a training data set and a validation data set at a 1:1 ratio in light of the personal tag data and the travel and accommodation data of criminals and ordinary people in city S. Firstly, the FP-growth algorithm is adopted to calculate association rules between the criminals and the ordinary people in their travel and hotel accommodation data, in order to discover criminal suspects based on association rules. Secondly, the DBSCAN algorithm is employed for clustering of the tag data of the criminals and the ordinary people, followed by similarity calculation, in order to discover criminal suspects based on tag clustering. Lastly, intersection operation is performed on the above two sets of criminal suspects, and the resulting intersection is verified against the criminal validation set for elimination of criminals who appear in the intersection so as to obtain final criminal suspects. Results show that a set of 648 criminal suspects is retrieved based on the association rules calculated by the FP-growth algorithm, while a set of 973 criminal suspects is retrieved based on DBSCAN clustering and cosine similarity of the personal tags; the number of criminal suspects is narrowed down to 567 after the intersection operation of the two sets, and 419 of the 567 criminal suspects are further verified to be criminals using the validation set, thereby leaving the other 148 to be the final criminal suspects and giving a prediction accuracy of 73.9%. The data mining method of criminal suspects based on association rules and tag clustering in this study has been successfully applied to the police system of city S, and the experiment proves the effectiveness of this method in detecting criminal suspects.

References

[1]  Agrawal, R., Imieliński, T. and Swami, A. (1993) Mining Association Rules between Sets of Items in Large Databases. ACM SIGMOD Record, 22, 207-216.
https://doi.org/10.1145/170036.170072
[2]  Ng, V., Chan, S., Lau, D. and Ying, C.M. (2007) Incremental Mining for Temporal Association Rules for Crime Pattern Discoveries. Proceedings of the 8th Australasian Database Conference, 63, 123-132.
[3]  Buczak, A.L. and Gifford, C.M. (2010) Fuzzy Association Rule Mining for Community Crime Pattern Discovery. ACM SIGKDD Workshop on Intelligence and Security Informatics, Washington DC, 25-28 July 2010, Article No. 2.
[4]  Tan, Y., Qi, Z. and Wang, J. (2012) Applications of Association Rules in Computer Crime Forensics. Applied Mechanics & Materials, 157-158, 1281-1286.
https://doi.org/10.4028/www.scientific.net/AMM.157-158.1281
[5]  Joshi, A. and Suresh, M.B. (2014) Compact Structure of Felonious Crime Sets Using FP-Tree Comparable Algorithms Analysis. International Journal of Computer Science and Information Technologies, 5, 2694-2699.
[6]  Ramesh Kumar, K. and Usha, D. (2013) Frequent Pattern Mining Algorithm for Crime Dataset: An Analysis. International Journal of Engineering Sciences & Research Technology, 2, 3379-3384.
[7]  Usha, D. and Ramesh Kumar, K. (2014) A Complete Survey on Application of Frequent Pattern Mining and Association Rule Mining on Crime Pattern Mining. International Journal of Advances in Computer Science and Technology, 3, 264-275.
[8]  Shekhar, S., Mohan, P., Oliver, D. and Zhou, X. (2012) Crime Pattern Analysis: A Spatial Frequent Pattern Mining Approach. No. TR-12-015, Minnesota University, Minneapolis.
[9]  Isafiade, O., Bagula, A. and Berman, S. (2015) A Revised Frequent Pattern Model for Crime Situation Recognition Based on Floor-Ceil Quartile Function. Procedia Computer Science, 55, 251-260.
https://doi.org/10.1016/j.procs.2015.07.042
[10]  Asmai, S.A., Roslin, N.I.A., Abdullah, R.W., et al. (2014) Predictive Crime Mapping Model Using Association Rule Mining for Crime Analysis. Science International, 26, 1703-1706.
[11]  Chen, Z.S., Zuo, L.M. and Xia, P.P. (2008) Analysis of Extraction and Association of Characteristics of ICO Economic Crime Based on Apriori Algorithm. Journal of Jiangxi Police Institute, 18-22.
[12]  Wang, L. and Sun, B. (2018) Analysis of Public Security Case Base Based on Data Mining. Gansu Science and Technology, 18-22.
[13]  Wei, S.J., Zhang, J.W. and Geng, R.N. (2006) Based on the Crime Profiling Research of Computer Forensics Analysis Method. Microcomputer Information, 22, 237-239.
[14]  Sheng, W. (2012) Principle of Investigation Information Association Rules. Science & Technology Information, 300-300.
[15]  Yu, N. (2015) Research on the Discovery Method of Suspicion Degree Relationship Based on the Association Rule Algorithm. Dalian Polytechnic University, Dalian.
[16]  Xu, W. and Zhang, J. (2016) Research on the Association Rule Applied in the Criminality.
[17]  Tang, Y.P. (2016) Recidivism Association Rule Mining Based on Apriori Algorithm. Command Information System and Technology, 91-95.
[18]  Feng, Z.H. and Feng, Q.J. (2017) Analysis on the Features of Recidivism Based on Association Rules. Journal of Zhejiang Sci-Tech University (Social Sciences Edition), 38, 57-60.
[19]  Yan, M.Q., Guo, Z.Y. and Ren, Z.H. (2017) Spatio-Temporal Analysis of Bus Pickpocketing Using Association Rules Based on Clustering. Journal of East China Normal University (Natural Science), No. 3, 145-152.
[20]  Sun, Y.H., Wang, W.J. and Chi, X.T. (2016) Correlation Mining and Prediction of Social Security Events Based on Multi-Dimensional Time Series Model. Journal of Tianjin University (Social Sciences), 18, 97-102.
[21]  Wang, H., Zheng, T. and Zhang, J.L. (2010) Cluster-Based Association Rule Algorithm in Criminal Application in Criminal Behavior Analysis. Journal of Chinese People’s Public Security University (Science and Technology), 16, 64-67.
[22]  Wang, H.B., Zhang, Y.T. and Wu, S. (2016) Application of Association Rules with Multiple Minimum Supports Based on the Data Cube in Crime Analysis. Journal of Geomatics Science and Technology, 33, 405-409.
[23]  Du, W. and Zhou, X.X. (2011) Research on Application of Incremental Association Rule Mining Algorithm in Criminal Behavior. Journal of Chinese People’s Public Security University (Science and Technology), 17, 56-58.
[24]  Han, J., Pei, H. and Yin, Y. (2000) Mining Frequent Patterns without Candidate Generation. Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data, Dallas, TX, 15-18 May 2000, 1-12.
https://doi.org/10.1145/342009.335372
[25]  Agrawal, R. and Srikant, R. (1994) Fast Algorithms for Mining Association Rules. Proceedings of the 20th International Conference on Very Large Data Bases, Santiago, Chile, 12-15 September 1994, 487-499.
[26]  Agarwal, R., Aggarwal, C. and Prasad, V.V.V. (2001) A Tree Projection Algorithm for Generation of Frequent Item Sets. Journal of Parallel and Distributed Computing, 61, 350-371.
https://doi.org/10.1006/jpdc.2000.1693
[27]  Kumar, B.S. and Rukmani, K.V. (2010) Implementation of Web Usage Mining Using APRIORI and FP Growth Algorithms. International Journal of Advanced Networking and Applications, 1, 400-404.
[28]  Bonchi, F. and Goethals, B. (2004) FP-Bonsai: The Art of Growing and Pruning Small FP-Trees. Proceedings of the 8th Pacific-Asia Conference on Knowledge Discovery and Data Mining, Sydney, 155-160.
https://doi.org/10.1007/978-3-540-24775-3_19
[29]  Zaki, M., Parthasarathy, S., Ogihara, M. and Li, W. (1997) New Algorithms for Fast Discovery of Association Rules. Proceedings of the 3rd International Conference on Knowledge Discovery and Data Mining (KDD’97), Newport Beach, CA, 14-17 August 1997, 283-296.
[30]  Borgelt, C. (2005) Keeping Things Simple: Finding Frequent Item Sets by Recursive Elimination. Proceedings of the 1st International Workshop on Open Source Data Mining: Frequent Pattern Mining Implementations, Chicago, IL, 21 August 2005, 66-70.
https://doi.org/10.1145/1133905.1133914
[31]  Tran, T.N., Drab, K. and Daszykowski, M. (2013) Revised DBSCAN Algorithm to Cluster Data with Dense Adjacent Clusters. Chemometrics and Intelligent Laboratory Systems, 120, 92-96.
https://doi.org/10.1016/j.chemolab.2012.11.006

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133