全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Results of Numerical Modeling of the Origin of Cyclones and Anticyclones in the Vicinity of the Intertropical Convergence Zone

DOI: 10.4236/acs.2019.92015, PP. 213-228

Keywords: Numerical Simulation, Air Flow, Lower Atmosphere, Tropical Cyclones

Full-Text   Cite this paper   Add to My Lib

Abstract:

A review of simulation results, devoted to time-dependent modeling of the initial stage of the formation of large-scale vortices in the troposphere in the vicinity of the intertropical convergence zone, is presented. The simulation results were obtained not long ago with the help of the mathematical model of the neutral wind system of the lower atmosphere, developed earlier in the Polar Geophysical Institute. The utilized mathematical model produces three-dimensional distributions of the atmospheric parameters in the height range from 0 to 15 km over a limited region of the Earth’s surface. Simulation results were obtained for the case when the limited three-dimensional simulation domain, situated at low latitudes, is intersected by an intertropical convergence zone in the west-east direction. The reviewed simulation results were obtained for various initial configurations of the intertropical convergence zone. Results of numerical modeling have indicated that the origin of convexities in the form of the intertropical convergence zone can lead to the formation of different large-scale vortices in the lower atmosphere, in particular, a tropical cyclone, pair of cyclonic vortices, pair of cyclonic-anticyclonic vortexes, and triplet of cyclonic vortices. The simulation results, obtained earlier and presented individually in various editions, are reviewed and summarized in the present paper. A physical mechanism, responsible for the formation of the simulated large-scale vortices in the vicinity of the intertropical convergence zone, is discussed.

References

[1]  Ooyama, K. (1969) Numerical Simulation of the Life Cycle of Tropical Cyclones. Journal of Atmospheric Sciences, 26, 3-40.
https://doi.org/10.1175/1520-0469(1969)026<0003:NSOTLC>2.0.CO;2
[2]  Montgomery, M.T. and Enagonio, J. (1998) Tropical Cyclogenesis via Convectively Forced Vortex Rossby Waves in a Three-Dimensional Quasigeostrophic Model. Journal of Atmospheric Sciences, 55, 3176-3207.
https://doi.org/10.1175/1520-0469(1998)055<3176:TCVCFV>2.0.CO;2
[3]  Li, T., Ge, X., Wang, B. and Zhu, Y. (2006) Tropical Cyclogenesis Associated with Rossby Wave Energy Dispersionof a Preesxisting Typhoon. Part II: Numerical Simulations. Journal of Atmospheric Sciences, 63, 1390-1409.
https://doi.org/10.1175/JAS3693.1
[4]  Montgomery, M.T., Wang, Z. and Dunkerton, T.J. (2010) Coarse, Intermediate and High Resolution Numerical Simulation of the Transition of a Tropical Wave Critical Layer to a Tropical Storm. Atmospheric Chemistry and Physics, 10, 10803-10827.
https://doi.org/10.5194/acp-10-10803-2010
[5]  Venkatesh, T.N. and Mathew, J. (2010) A Numerical Study of the Role of the Vertical Structure of Vorticity during Tropical Cyclone Genesis. Fluid Dynamics Research, 42, Article ID: 045506. https://doi.org/10.1088/0169-5983/42/4/045506
[6]  Reed, K.A. and Jablonowski, C. (2011) Impact of Physical Parameterizations on Idealized Tropical Cyclones in the Community Atmosphere Model. Geophysical Research Letters, 38, Article ID: L04805. https://doi.org/10.1029/2010GL046297
[7]  Abarca, S.F. and Corbosiero, K.L. (2011) Secondary Eyewall Formation in WRF Simulations of Hurricanes Rita and Katrina (2005). Geophysical Research Letters, 38, Article ID: L07802. https://doi.org/10.1029/2011GL047015
[8]  Xu, Y.M. (2011) The Genesis of Tropical Cyclone Bilis (2000) Associated with Cross-Equatorial Surges. Advances in Atmospheric Sciences, 28, 665-681.
https://doi.org/10.1007/s00376-010-9142-z
[9]  Belotserkovskii, O.M., Mingalev, I.V., Mingalev, V.S., Mingalev, O.V. and Oparin, A.M. (2006) Mechanism of the Appearance of a Large-Scale Vortex in the Troposphere above a Nonuniformly Heated Surface. Doklady Earth Sciences, 411, 1284-1288.
https://doi.org/10.1134/S1028334X06080277
[10]  Mingalev, I.V. and Mingalev, V.S. (2005) The Global Circulation Model of the Lower and Middle Atmosphere of the Earth with a Given Temperature Distribution. Mathematical Modeling, 17, 24-40. (In Russian)
[11]  Mingalev, I.V., Mingalev, V.S. and Mingaleva, G.I. (2007) Numerical Simulation of Global Distributions of the Horizontal and Vertical Wind in the Middle Atmosphere Using a Given Neutral Gas Temperature Field. Journal of Atmospheric and Solar-Terrestrial Physics, 69, 552-568. https://doi.org/10.1016/j.jastp.2006.10.005
[12]  Mingalev, I.V., Mingalev, O.V. and Mingalev, V.S. (2008) Model Simulation of Global Circulation in the Middle Atmosphere for January Conditions. Advances in Geosciences, 15, 11-16. https://doi.org/10.5194/adgeo-15-11-2008
[13]  Mingalev, I.V., Mingalev, V.S. and Mingaleva, G.I. (2012) Numerical Simulation of the Global Neutral Wind System of the Earth’s Middle Atmosphere for Different Seasons. Atmosphere, 3, 213-228. https://doi.org/10.3390/atmos3010213
[14]  Mingalev, I.V. and Mingalev, V.S. (2012) Numerical Modeling of the Influence of Solar Activity on the Global Circulation in the Earth’s Mesosphere and Lower Thermosphere. International Journal of Geophysics, 2012, Article ID: 106035.
[15]  Mingalev, I., Mingaleva, G. and Mingalev, V. (2013) A Simulation Study of the Effect of Geomagnetic Activity on the Global Circulation in the Earth’s Middle Atmosphere. Atmospheric and Climate Sciences, 3, 8-19.
https://doi.org/10.4236/acs.2013.33A002
[16]  Mingalev, I.V., Orlov, K.G. and Mingalev, V.S. (2017) Numerical Modeling of the Influence of the Relief of a Planet on the Global Circulation of the Earth’s Stratosphere and Mesosphere. Atmospheric and Climate Sciences, 7, 496-510.
https://doi.org/10.4236/acs.2017.74036
[17]  Mingalev, I.V., Orlov, K.G. and Mingalev, V.S. (2012) A Mechanism of Formation of Polar Cyclones and Possibility of Their Prediction Using Satellite Observations. Cosmic Research, 50, 160-169. https://doi.org/10.1134/S0010952512010066
[18]  Mingalev, I.V., Orlov, K.G. and Mingalev, V.S. (2014) A Modeling Study of the Initial Formation of Polar Lows in the Vicinity of the Arctic Front. Advances in Meteorology, 2014, Article ID: 970547.
[19]  Belotserkovskii, O.M., Mingalev, I.V., Mingalev, V.S., Mingalev, O.V., Oparin, A.M. and Chechetkin, V.M. (2009) Formation of Large-Scale Vortices in Shear Flow of the Lower Atmosphere of the Earth in the Region of Tropical Latitudes. Cosmic Research, 47, 466-479. https://doi.org/10.1134/S0010952509060033
[20]  Mingalev, I.V., Astafieva, N.M., Orlov, K.G., Mingalev, V.S. and Mingalev, O.V. (2010) The Mechanism of Formation of Cyclonic Vortices in the Intertropical Zone of Convergence and Their Early Detection. Current Problems in Remote Sensing of the Earth from Space, 7, 112-125. (In Russian)
[21]  Mingalev, I.V., Astafieva, N.M., Orlov, K.G., Mingalev, V.S., Mingalev, O.V. and Chechetkin, V.M. (2011) Possibility of a Detection of Tropical Cyclones and Hurricanes Formation According to Satellite Remote Sensing. Current Problems in Remote Sensing of the Earth from Space, 8, 290-296. (In Russian)
[22]  Mingalev, I.V., Astafieva, N.M., Orlov, K.G., Chechetkin, V.M., Mingalev, V.S. and Mingalev, O.V. (2012) Influence of a Geometry of Air Mass Flow in the Region of an Intertropical Zone of Convergence on Process of Formation of Cyclone Vortices. Current Problems in Remote Sensing of the Earth from Space, 9, 154-161. (In Russian)
[23]  Mingalev, I.V., Astafieva, N.M., Orlov, K.G., Chechetkin, V.M., Mingalev, V.S. and Mingalev, O.V. (2012) Numerical Simulation of Formation of Cyclone Vortex Flows in the Intertropical Zone of Convergence and Their Early Detection. Cosmic Research, 50, 233-248. https://doi.org/10.1134/S0010952512020062
[24]  Mingalev, I.V., Astafieva, N.M., Orlov, K.G., Mingalev, V.S., Mingalev, O.V. and Chechetkin, V.M. (2013) A Simulation Study of the Formation of Large-Scale Cyclonic and Anticyclonic Vortices in the Vicinity of the Intertropical Convergence Zone. ISRN Geophysics, 2013, Article ID: 215362.
[25]  Mingalev, I.V., Astafieva, N.M., Orlov, K.G., Mingalev, V.S., Mingalev, O.V. and Chechetkin, V.M. (2014) Numerical Modeling of the Initial Formation of Cyclonic Vortices at Tropical Latitudes. Atmospheric and Climate Sciences, 4, 899-906.
https://doi.org/10.4236/acs.2014.45079
[26]  Mingalev, V.S., Mingalev, I.V., Mingalev, O.V., Oparin, A.M. and Orlov, K.G. (2010) Generalization of the Hybrid Monotone Second-Order Finite Difference Scheme for Gas Dynamics Equations to the Case of Unstructured 3D Grid. Computational Mathematics and Mathematical Physics, 50, 877-889.
https://doi.org/10.1134/S0965542510050118
[27]  Broccoli, A.J., Dahl, R.A. and Stouffer, R.J. (2006) Response of the ITCZ to Northern Hemisphere Cooling. Geophysical Research Letters, 33, L01702.
https://doi.org/10.1029/2005GL024546
[28]  Fedorov, A., Barreiro, M., Boccaletti, G., Pacanowski, R. and Philander, S.G. (2007) The Freshening of Surface Waters in High Latitudes: Effects on the Thermohaline and Wind-Driven Circulations. Journal of Physical Oceanography, 37, 896-907.
https://doi.org/10.1175/JPO3033.1
[29]  Chiang, J.C.H. and Friedman, A.R. (2012) Extratropical Cooling, Interhemispheric Thermal Gradients, and Tropical Climate Change. Annual Review of Earth and Planetary Sciences, 40, 383-412.
https://doi.org/10.1146/annurev-earth-042711-105545
[30]  Chen, T.C., Tsay, J.D., Yen, M.C. and Cayanan, E.O. (2010) Formation of the Philippine Twin Tropical Cyclones during the 2008 Summer Monsoon Onset. Weather and Forecasting, 25, 1317-1341. https://doi.org/10.1175/2010WAF2222395.1

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133