全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Conceptual Density Functional Theory Study of the Chemical Reactivity Properties and Bioactivity Scores of the Leu-Enkephalin Opioid Peptide Neurotransmitter

DOI: 10.4236/cmb.2019.91002, PP. 13-26

Keywords: Leu-Enkephalin, Opioid Neurotransmitters, Computational Chemistry, Conceptual DFT, Bioactivity Scores

Full-Text   Cite this paper   Add to My Lib

Abstract:

The SMD solvation model (Solvation Model based on the Density) and eight density functionals, CAM-B3LYP, LC-ωPBE, M11, MN12SX, N12SX, ωB97, ωB97X, and ωB97XD, were assessed in link with the Def2TZVP basis set for the calculation of the structure of the Leu-Enkephalin Opioid Peptide Neurotransmitter as well as their molecular properties. Through the Conceptual Density Functional Theory (CDFT), the entire chemical descriptors for the system were calculated. The active regions of the molecules necessary for electrophilic, nucleophilic and radical attacks were chosen through linking them with the corresponding Fukui functions. Furthermore, the prediction of the pKa value for the peptide is done with great accuracy as well as the ability of the studied molecule in acting as an efficient inhibitor of the formation of Advanced Glycation Endproducts (AGEs), which comprises of a useful knowledge for the development of drugs for preventing Alzheimer, Diabetes and Parkinson diseases. Lastly, the bioactivity scores for the studied peptides are predicted via various methodologies.

References

[1]  Parr, R. and Yang, W. (1989) Density-Functional Theory of Atoms and Molecules. Oxford University Press, New York.
[2]  Geerlings, P., De Proft, F. and Langenaeker, W. (2003) Conceptual Density Functional Theory. Chemical Reviews, 103, 1793-1873.
https://doi.org/10.1021/cr990029p
[3]  Rapaka, R.S., Barnet, G. and Hawks, R.L. (1986) Opioid Peptides: Medicinal Chemistry. NIDA, Rockville.
[4]  Rapaka, R.S. and Hawks, R.L. (1986) Opioid Peptides: Molecular Pharmacology, Biosynthesis and Analysis. NIDA, Rockville.
[5]  Frau, J. and Glossman-Mitnik, D. (2018) Molecular Reactivity and Absorption Properties of Melanoidin Blue-G1 through Conceptual DFT. Molecules, 23, 559.
https://doi.org/10.3390/molecules23030559
[6]  Frau, J. and Glossman-Mitnik, D. (2018) Conceptual DFT Study of the Local Chemical Reactivity of the Dilysyldipyrrolones A and B Intermediate Melanoidins. Theoretical Chemistry Accounts, 137, 1210.
https://doi.org/10.1007/s00214-018-2244-x
[7]  Frau, J. and Glossman-Mitnik, D. (2018) Conceptual DFT Study of the Local Chemical Reactivity of the Colored BISARG Melanoidin and Its Protonated Derivative. Frontiers in Chemistry, 6, 1-9.
[8]  Frau, J. and Glossman-Mitnik, D. (2018) Molecular Reactivity of Some Maillard Reaction Products Studied through Conceptual DFT. Contemporary Chemistry, 1, 1-14.
[9]  Frau, J. and Glossman-Mitnik, D. (2018) Computational Study of the Chemical Reactivity of the Blue-M1 Intermediate Melanoidin. Computational and Theoretical Chemistry, 1134, 22-29.
https://doi.org/10.1016/j.comptc.2018.04.018
[10]  Frau, J. and Glossman-Mitnik, D. (2018) Chemical Reactivity Theory Applied to the Calculation of the Local Reactivity Descriptors of a Colored Maillard Reaction Product. Chemical Science International Journal, 22, 1-14.
[11]  Frau, J. and Glossman-Mitnik, D. (2018) Blue M2: An Intermediate Melanoidin Studied via Conceptual DFT. Journal of Molecular Modeling, 24, 1-13.
https://doi.org/10.1007/s00894-018-3673-0
[12]  Frau, J., Flores-Holgun, N. and Glossman-Mitnik, D. (2018) Chemical Reactivity Properties, pKa Values, AGEs Inhibitor Abilities and Bioactivity Scores of the Mirabamides A-H Peptides of Marine Origin Studied by Means of Conceptual DFT. Marine Drugs, 16, 302-319.
https://doi.org/10.3390/md16090302
[13]  Frau, J., Hernández-Haro, N. and Glossman-Mitnik, D. (2017) Computational Prediction of the pKas of Small Peptides through Conceptual DFT Descriptors. Chemical Physics Letters, 671, 138-141.
https://doi.org/10.1016/j.cplett.2017.01.038
[14]  Frau, J. and Glossman-Mitnik, D. (2017) Chemical Reactivity Theory Study of Advanced Glycation Endproduct Inhibitors. Molecules, 22, 226.
[15]  Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J.A., Peralta, J.E., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V.N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Rega, N., Millam, J.M., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, R.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, O., Foresman, J.B., Ortiz, J.V., Cioslowski, J. and Fox, D.J. (2016) Gaussian 09 Revision E.01. Gaussian Inc., Wallingford.
[16]  Weigend, F. and Ahlrichs, R. (2005) Balanced Basis Sets of Split Valence, Triple Zeta Valence and Quadruple Zeta Valence Quality for H to Rn: Design and Assessment of Accuracy. Physical Chemistry Chemical Physics, 7, 3297-3305.
https://doi.org/10.1039/b508541a
[17]  Weigend, F. (2006) Accurate Coulomb-Fitting Basis Sets for H to R. Physical Chemistry Chemical Physics, 8, 1057-1065.
https://doi.org/10.1039/b515623h
[18]  Marenich, A., Cramer, C. and Truhlar, D. (2009) Universal Solvation Model Based on Solute Electron Density and a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions. Journal of Physical Chemistry B, 113, 6378-6396.
https://doi.org/10.1021/jp810292n
[19]  Yanai, T., Tew, D.P. and Handy, N.C. (2004) A New Hybrid Exchange-Correlation Functional Using the Coulomb-Attenuating Method (CAM-B3LYP). Chemical Physics Letters, 393, 51-57.
https://doi.org/10.1016/j.cplett.2004.06.011
[20]  Henderson, T.M., Izmaylov, A.F., Scalmani, G. and Scuseria, G.E. (2009) Can Short-Range Hybrids Describe Long-Range-Dependent Properties? The Journal of Chemical Physics, 131, Article ID: 044108.
https://doi.org/10.1063/1.3185673
[21]  Peverati, R. and Truhlar, D.G. (2011) Improving the Accuracy of Hybrid Meta-GGA Density Functionals by Range Separation. The Journal of Physical Chemistry Letters, 2, 2810-2817.
https://doi.org/10.1021/jz201170d
[22]  Peverati, R. and Truhlar, D.G. (2012) Screened-Exchange Density Functionals with Broad Accuracy for Chemistry and Solid-State Physics. Physical Chemistry Chemical Physics, 14, 16187-16191.
https://doi.org/10.1039/c2cp42576a
[23]  Chai, J. and Head-Gordon, M. (2008) Systematic Optimization of Long-Range Corrected Hybrid Density Functionals. Journal of Chemical Physics, 128, Article ID: 084106.
https://doi.org/10.1063/1.2834918
[24]  Chai, J. and Head-Gordon, M. (2008) Long-Range Corrected Hybrid Density Functionals with Damped Atom-Atom Dispersion Corrections. Physical Chemistry Chemical Physics, 10, 6615-6620.
https://doi.org/10.1039/b810189b
[25]  Parr, R., Szentpaly, L. and Liu, S. (1999) Electrophilicity Index. Journal of the American Chemical Society, 121, 1922-1924.
https://doi.org/10.1021/ja983494x
[26]  Gázquez, J., Cedillo, A. and Vela, A. (2007) Electrodonating and Electroaccepting Powers. Journal of Physical Chemistry A, 111, 1966-1970.
https://doi.org/10.1021/jp065459f
[27]  Chattaraj, P., Chakraborty, A. and Giri, S. (2009) Net Electrophilicity. Journal of Physical Chemistry A, 113, 10068-10074.
https://doi.org/10.1021/jp904674x
[28]  Toro-Labbé, A. (2007) Theoretical Aspects of Chemical Reactivity. Elsevier Science, Amsterdam.
[29]  Morell, C., Grand, A. and Toro-Labbé, A. (2005) New Dual Descriptor for Chemical Reactivity. Journal of Physical Chemistry A, 109, 205-212.
https://doi.org/10.1021/jp046577a
[30]  Morell, C., Grand, A. and Toro-Labbé, A. (2006) Theoretical Support for Using the Δf(r) Descriptor. Chemical Physics Letters, 425, 342-346.
https://doi.org/10.1016/j.cplett.2006.05.003
[31]  Martnez-Araya, J.I. (2012) Revisiting Caffeate’s Capabilities as a Complexation Agent to Silver Cation in Mining Processes by Means of the Dual Descriptor—A Conceptual DFT Approach. Journal of Molecular Modeling, 18, 4299-4307.
https://doi.org/10.1007/s00894-012-1405-4
[32]  Martnez-Araya, J.I. (2012) Explaining Reaction Mechanisms Using the Dual Descriptor: A Complementary Tool to the Molecular Electrostatic Potential. Journal of Molecular Modeling, 19, 2715-2722.
https://doi.org/10.1007/s00894-012-1520-2
[33]  Martínez-Araya, J.I. (2015) Why Is the Dual Descriptor a More Accurate Local Reactivity Descriptor than Fukui Functions? Journal of Mathematical Chemistry, 53, 451-465.
https://doi.org/10.1007/s10910-014-0437-7
[34]  Domingo, L.R., Pérez, P. and Sáez, J. (2013) Understanding the Local Reactivity in Polar Organic Reactions through Electrophilic and Nucleophilic Parr Functions. RSC Advances, 3, 1486-1494.
https://doi.org/10.1039/C2RA22886F
[35]  Chamorro, E., Pérez, P. and Domingo, L.R. (2013) On the Nature of Parr Functions to Predict the Most Reactive Sites along Organic Polar Reactions. Chemical Physics Letters, 582, 141-143.
https://doi.org/10.1016/j.cplett.2013.07.020
[36]  Domingo, L.R., Ríos-Gutiérrez, M. and Pérez, P. (2016) Applications of the Conceptual Density Functional Theory Indices to Organic Chemistry Reactivity. Molecules, 21, 748.
https://doi.org/10.3390/molecules21060748
[37]  Domingo, L.R. and Perez, P. (2011) The Nucleophilicity N Index in Organic Chemistry. Organic and Biomolecular Chemistry, 9, 7168-7175.
https://doi.org/10.1039/c1ob05856h
[38]  Rahbar, S. and Figarola, J.L. (2003) Novel Inhibitors of Advanced Glycation Endproducts. Archives of Biochemistry and Biophysics, 419, 63-79.
https://doi.org/10.1016/j.abb.2003.08.009
[39]  Peyroux, J. and Sternberg, M. (2006) Advanced Glycation Endproducts (AGEs): Pharmacological Inhibition in Diabetes. Pathologie Biologie, 54, 405-419.
https://doi.org/10.1016/j.patbio.2006.07.006
[40]  Leeson, P. (2012) Drug Discovery: Chemical Beauty Contest. Nature, 481, 455-456.
https://doi.org/10.1038/481455a
[41]  Martin, Y.C. (2005) A Bioavailability Score. Journal of Medicinal Chemistry, 48, 3164-3170.
https://doi.org/10.1021/jm0492002
[42]  Rajasekaran, S., Rao, G. and Zonunsiami (2017) Molecular Properties and Bio-Activity Score of 2[2-(4-chlorophenyl)-4-oxoquinazolin-3(4H)-yl]amino-N (substitutedphenyl) Acetamides. Journal of Pharmaceutical Research, 16, 95.
https://doi.org/10.18579/jpcrkc/2017/16/2/116437
[43]  Erylmaz, S. (2018) The Theoretical Investigation of Global Reactivity Descriptors, NLO Behaviours and Bioactivity Scores of Some Norbornadiene Derivatives. Sakarya University Journal of Science, 22, 1.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133