全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Amylotrophic Lateral Sclerosis-Like Motor Impairment in Prion Diseases

DOI: 10.4236/nm.2019.101002, PP. 15-29

Keywords: Prion, Super Oxide Dismutase-1, Amyotrophic Lateral Sclerosis, Motor Neuron Diseases, Interactomes

Full-Text   Cite this paper   Add to My Lib

Abstract:

Neurodegenerative diseases are collective diseases that affect different parts of the brain with common or distinct disease phenotype. In almost all of the Prion diseases, motor impairments that are characterized by motor derangement, apathy, ataxia, and myoclonus are documented and again are shared by motor neuron diseases (MND). Proteins such as; B-Cell lymphoma 2 (BCL2), Copper chaperone for superoxide dismutase (CCS), Amyloid beta precursor protein (APP), Amyloid Precursor-Like Protein1/2 (APLP1/2), Catalase (CAT), and Stress induced phosphoprotein 1 (STIP1), are common interactomes of Prion and superoxide dismutase 1 (SOD1). Although there is no strong evidence to show the interaction of SOD1 and Prion, the implicated common interacting proteins indicate the potential bilateral interaction of those proteins in health and disease. For example, down-regulation of Heat shock protein A (HSPA5), a Prion interactome, increases accumulation of misfolded SOD1 leading to MND. Loss of Cu uptake function disturbs normal function of CCS. Over-expressed proteasome subunit alpha 3 (PSMA3) could fatigue its normal function of removing misfolded proteins. Studies showed the increase in CAT and lipid oxidation both in Prion-knocked out animal and in catalase deficiency cases. Up regulation, down regulation or direct interaction with their interactomes are predicted molecular mechanisms by which Prion and SOD exert their effect. The loss of protective function or the gain of a novel toxic property by the principal proteins is shared in Prion and MND. Thus, it might be possible to conclude that the interplay of proteins displayed in both diseases could be a key phenomenon in motor dysfunction development.

References

[1]  Sosso, F.A.E. and Kabore, P. (2016) The African Burden of Mental Health. Journal of Mental Disorders and Treatment, 2, 1222.
https://doi.org/10.4172/2471-271X.1000122
[2]  Liberski, P.P. (2013) Kuru: A Papua New Guinea to the Neanderthals’ Extinction. Pathogens, 2, 472-505.
https://doi.org/10.3390/pathogens2030472
[3]  NPR.org. (2017) When People Ate People, a Strange Disease Emerged.
https://www.npr.org/sections/thesalt/2016/09/06/482952588/when-people-ate-people-a-strange-disease-emerged
[4]  Almond, J.W. (1998) Bovine Spongiform Encephalopathy and New Variant Creutzfeldt-Jakob Disease. British Medical Bulletin, 54, 749-759.
https://doi.org/10.1093/oxfordjournals.bmb.a011724
[5]  Collinge, J., et al. (1994) Prion Protein Is Necessary for Normal Synaptic Function. Nature, 370, 295-297.
https://doi.org/10.1038/370295a0
[6]  Dormont, D. (2002) Prion Diseases: Pathogenesis and Public Health Concerns. FEBS Letters, 529, 17-21.
https://doi.org/10.1016/S0014-5793(02)03268-4
[7]  Choi, D.K., Kim, I.S. and Do, J.H. (2014) Signaling Pathway Analysis of MPP+-Treated Human Neuroblastoma SH-SY5Y Cells. Biotechnology and Bioprocess Engineering, 19, 332-340.
https://doi.org/10.1007/s12257-013-0754-x
[8]  La Mendola, D., et al. (2008) Prion Proteins Leading to Neurodegeneration. Current Alzheimer Research, 5, 579-590.
https://doi.org/10.2174/156720508786898415
[9]  Martins, V.R., et al. (2001) Insights into the Physiological Function of Cellular Prion Protein. Brazilian Journal of Medical and Biological Research, 34, 585-595.
https://doi.org/10.1590/S0100-879X2001000500005
[10]  Lee, K.J., et al. (2007) Cellular Prion Protein (PrPC) Protects Neuronal Cells from the Effect of Huntingtin Aggregation. Journal of Cell Science, 120, 2663-2671.
https://doi.org/10.1242/jcs.004598
[11]  Westergard, L., Christensen, H.M. and Harris, D.A. (2007) The Cellular Prion Protein (PrPC): Its Physiological Function and Role in Disease. Biochimica et Biophysica Acta (BBA)—Molecular Basis of Disease, 1772, 629-644.
https://doi.org/10.1016/j.bbadis.2007.02.011
[12]  Solomon, I.H., Schepker, J.A. and Harris, D.A. (2010) Prion Neurotoxicity: Insights from Prion Protein Mutants. Current Issues in Molecular Biology, 12, 51-61.
[13]  Castle, A.R. and Gill, A.C. (2017) Physiological Functions of the Cellular Prion Protein. Frontiers in Molecular Biosciences, 4, 19.
https://doi.org/10.3389/fmolb.2017.00019
[14]  Kozlowski, H., et al. (2009) Copper, Iron, and Zinc Ions Homeostasis and Their Role in Neurodegenerative Disorders (Metal Uptake, Transport, Distribution and Regulation). Coordination Chemistry Reviews, 253, 2665-2685.
https://doi.org/10.1016/j.ccr.2009.05.011
[15]  Onodera, T. (2017) Dual Role of Cellular Prion Protein in Normal Host and Alzheimer’s Disease. Proceedings of the Japan Academy. Series B, Physical and Biological Sciences, 93, 155-173.
https://doi.org/10.2183/pjab.93.010
[16]  McKinley, M.P., et al. (1987) Developmental Expression of Prion Protein Gene in Brain. Developmental Biology, 121, 105-110.
https://doi.org/10.1016/0012-1606(87)90143-6
[17]  Ciric, D. and Rezaei, H. (2015) Biochemical Insight into the Prion Protein Family. Frontiers in Cell and Developmental Biology, 3, 5.
https://doi.org/10.3389/fcell.2015.00005
[18]  Harris, D.A. (1999) Cellular Biology of Prion Diseases. Clinical Microbiology Reviews, 12, 429-444.
https://doi.org/10.1128/CMR.12.3.429
[19]  Otvos, L. and Cudic, M. (2002) Post-Translational Modifications in Prion Proteins. Current Protein & Peptide Science, 3, 643-652.
https://doi.org/10.2174/1389203023380440
[20]  Duan, G. and Walther, D. (2015) The Roles of Post-Translational Modifications in the Context of Protein Interaction Networks. PLoS Computational Biology, 11, e1004049.
https://doi.org/10.1371/journal.pcbi.1004049
[21]  Tessier, P.M. and Lindquist, S. (2009) Unraveling Infectious Structures, Strain Variants and Species Barriers for the Yeast Prion [PSI+]. Nature Structural & Molecular Biology, 16, 598-605.
https://doi.org/10.1038/nsmb.1617
[22]  Woodsmith, J., Kamburov A. and Stelzl, U. (2013) Dual Coordination of Post Translational Modifications in Human Protein Networks. PLoS Computational Biology, 9, e1002933.
https://doi.org/10.1371/journal.pcbi.1002933
[23]  Holman, R.C., et al. (2010) Human Prion Diseases in the United States. PLoS ONE, 5, e8521.
https://doi.org/10.1371/journal.pone.0008521
[24]  Grizel, A.V., Rubel, A.A. and Chernoff, Y.O. (2016) Strain Conformation Controls the Specificity of Cross-Species Prion Transmission in the Yeast Model. Prion, 10, 269-282.
https://doi.org/10.1080/19336896.2016.1204060
[25]  Cobb, N.J. and Surewicz, W.K. (2009) Prion Diseases and Their Biochemical Mechanisms. Biochemistry, 48, 2574-2585.
https://doi.org/10.1021/bi900108v
[26]  Marin-Moreno, A., et al. (2017) Transmission and Replication of Prions. Progress in Molecular Biology and Translational Science, 150, 181-201.
https://doi.org/10.1016/bs.pmbts.2017.06.014
[27]  Gambetti, P., et al. (2003) Sporadic and Familial CJD: Classification and Characterisation. British Medical Bulletin, 66, 213-239.
https://doi.org/10.1093/bmb/66.1.213
[28]  Morales, R. (2017) Prion Strains in Mammals: Different Conformations Leading to Disease. PLoS Pathogens, 13, e1006323.
https://doi.org/10.1371/journal.ppat.1006323
[29]  Wadsworth, J.D.F., Kong, Q., Zou, W., Parchi, P. and Chen, S.G. (2003) Molecular and Clinical Classification of Human Prion Disease. British Medical Bulletin, 66, 241-254.
https://doi.org/10.1093/bmb/66.1.241
[30]  Chen, C. and Dong, X.P. (2016) Epidemiological Characteristics of Human Prion Diseases. Infectious Diseases of Poverty, 5, 47.
https://doi.org/10.1186/s40249-016-0143-8
[31]  Reiniger, L., et al. (2013) Filamentous White Matter Prion Protein Deposition Is a Distinctive Feature of Multiple Inherited Prion Diseases. Acta Neuropathologica Communications, 1, 8.
https://doi.org/10.1186/2051-5960-1-8
[32]  Takada, L.T. and Geschwind, M.D. (2013) Prion Diseases. Seminars in Neurology, 33, 348-356.
https://doi.org/10.1055/s-0033-1359314
[33]  Rodriguez, M.M., et al. (2005) A Novel Mutation (G114V) in the Prion Protein Gene in a Family with Inherited Prion Disease. Neurology, 64, 1455-1477.
https://doi.org/10.1212/01.WNL.0000158618.39527.93
[34]  Nakatani, E. (2016) Specific Clinical Signs and Symptoms Are Predictive of Clinical Course in Sporadic Creutzfeldt-Jakob Disease. European Journal of Neurology, 23, 1455-1462.
https://doi.org/10.1111/ene.13057
[35]  Wijesekera, L.C. and Leigh, P.N. (2009) Amyotrophic Lateral Sclerosis. Orphanet Journal of Rare Diseases, 4, 3.
https://doi.org/10.1186/1750-1172-4-3
[36]  Desai, M.S.J. (2000) Motor Neuron Disease: Classification and Nomenclature. Amyotrophic Lateral Sclerosis and Other Motor Neuron Disorders, 1, 105-112.
https://doi.org/10.1080/14660820050515403
[37]  Statland, J.M., et al. (2015) Patterns of Weakness, Classification of Motor Neuron Disease & Clinical Diagnosis of Sporadic ALS. Neurologic Clinics, 33, 735-748.
https://doi.org/10.1016/j.ncl.2015.07.006
[38]  Chen, S., Barohn, R.J., McVey, A.L., Katz, J.S. and Dimachkie, M.M. (2013) Genetics of Amyotrophic Lateral Sclerosis: An Update. Molecular Neurodegeneration, 8, 28.
https://doi.org/10.1186/1750-1326-8-28
[39]  Parakh, S. and Atkin, J.D. (2016) Protein Folding Alterations in Amyotrophic Lateral Sclerosis. Brain Research, 1648, 633-649.
https://doi.org/10.1016/j.brainres.2016.04.010
[40]  Renton, A.E., et al. (2011) A Hexanucleotide Repeat Expansion in C9ORF72 Is the Cause of Chromosome 9p21-Linked ALS-FTD. Neuron, 72, 257-268.
https://doi.org/10.1016/j.neuron.2011.09.010
[41]  Van Blitterswijk, M., DeJesus-Hernandez, M. and Rademakers, R. (2012) How Do C9ORF72 Repeat Expansions Cause ALS and FTD: Can We Learn from Other Non-Coding Repeat Expansion Disorders? Current Opinion in Neurology, 25, 689-700.
https://doi.org/10.1097/WCO.0b013e32835a3efb
[42]  Shaw, R. (2005) Molecular and Cellular Pathways of Neurodegeneration in Motor Neurone Disease. Journal of Neurology, Neurosurgery, and Psychiatry, 76, 1046-1057.
https://doi.org/10.1136/jnnp.2004.048652
[43]  Foran, E. and Trotti, D. (2009) Glutamate Transporters and the Excitotoxic Path to Motor Neuron Degeneration in Amyotrophic Lateral Sclerosis. Antioxidants & Redox Signaling, 11, 1587-1602.
https://doi.org/10.1089/ars.2009.2444
[44]  Zarei, S., et al. (2015) A Comprehensive Review of Amyotrophic Lateral Sclerosis. Surgical Neurology International, 6, 171.
https://doi.org/10.4103/2152-7806.169561
[45]  Roos, P., Vesterberg, O. and Nordberg, M. (2006) Metals in Motor Neuron Diseases. Experimental Biology and Medicine, 231, 1481-1487.
https://doi.org/10.1177/153537020623100906
[46]  Chen, X., Guo, C. and Kong, J. (2012) Oxidative Stress in Neurodegenerative Diseases. Neural Regeneration Research, 7, 376-385.
[47]  Akhtar, R. (2004) Bcl-2 Family Regulation of Neuronal Development and Neurodegeneration. Biochimica et Biophysica Acta, 1644, 189-203.
https://doi.org/10.1016/j.bbamcr.2003.10.013
[48]  Hetz, C., et al. (2007) The Proapoptotic BCL-2 Family Member BIM Mediates Motoneuron Loss in a Model of Amyotrophic Lateral Sclerosis. Cell Death and Differentiation, 14, 1386-1389.
https://doi.org/10.1038/sj.cdd.4402166
[49]  Ramesh, N. and Pandey, U.B. (2017) Autophagy Dysregulation in ALS: When Protein Aggregates Get Out of Hand. Frontiers in Molecular Neuroscience, 10, 263.
https://doi.org/10.3389/fnmol.2017.00263
[50]  Cheon, C.K., et al. (2017) Autosomal Dominant Transmission of Complicated Hereditary Spastic Paraplegia Due to a Dominant Negative Mutation of KIF1A, SPG30 Gene. Scientific Reports, 7, Article No. 12527.
https://doi.org/10.1038/s41598-017-12999-9
[51]  Ninds.nih.gov (2017) Motor Neuron Diseases Fact Sheet. National Institute of Neurological Disorders and Stroke.
https://www.ninds.nih.gov/Disorders/Patient-Caregiver-Education/Fact-Sheets/Motor-Neuron-Diseases-Fact-Sheet
[52]  Burghes, A.H.M. and Beattie, C.E. (2009) Spinal Muscular Atrophy: Why Do Low Levels of Survival Motor Neuron Protein Make Motor Neurons Sick? Nature Reviews Neuroscience, 10, 597-609.
https://doi.org/10.1038/nrn2670
[53]  Sharma, K.R., Saigal, G., Maudsley, A.A. and Govind, V. (2011) 1H MRS of Basal Ganglia and Thalamus in Amyotrophic Lateral Sclerosis. NMR in Biomedicine, 24, 1270-1276.
https://doi.org/10.1002/nbm.1687
[54]  Bede, P., et al. (2013) Basal Ganglia Involvement in Amyotrophic Lateral Sclerosis. Neurology, 81, 2107-2115.
https://doi.org/10.1212/01.wnl.0000437313.80913.2c
[55]  Vargas, M.R. and Johnson, J.A. (2010) Astrogliosis in Amyotrophic Lateral Sclerosis: Role and Therapeutic Potential of Astrocytes. Neurotherapeutics, 7, 471-481.
https://doi.org/10.1016/j.nurt.2010.05.012
[56]  Frakes, A.E., et al. (2014) Microglia Induce Motor Neuron Death via the Classical NF-κB Pathway in Amyotrophic Lateral Sclerosis. Neuron, 81, 1009-1023.
https://doi.org/10.1016/j.neuron.2014.01.013
[57]  Polvikoski, T.M., Murray, A., Harper, P. and Neal, J. (2003) Familial Motor Neurone Disease with Dementia: Phenotypic Variation and Cerebellar Pathology. Journal of Neurology, Neurosurgery & Psychiatry, 74, 1516-1520.
https://doi.org/10.1136/jnnp.74.11.1516
[58]  Leighton, S.E., Burton, M.J., Lund, W.S. and Cochrane, G.M. (1994) Swallowing in Motor Neurone Disease. Journal of the Royal Society of Medicine, 87, 801-805.
[59]  Watts, C.R. and Vanryckeghem, M. (2001) Laryngeal Dysfunction in Amyotrophic Lateral Sclerosis: A Review and Case Report. BMC Ear, Nose and Throat Disorders, 1, 1.
https://doi.org/10.1186/1472-6815-1-1
[60]  Atassi, N., et al. (2011) Depression in Amyotrophic Lateral Sclerosis. Amyotrophic Lateral Sclerosis, 12, 109-112.
https://doi.org/10.3109/17482968.2010.536839
[61]  Chiesa, R. and Harris, D.A. (2009) Fishing for Prion Protein Function. PLoS Biology, 7, e1000075.
https://doi.org/10.1371/journal.pbio.1000075
[62]  Lee, Y.J. and Baskakov, I.V. (2014) The Cellular Form of the Prion Protein Guides the Differentiation of Human Embryonic Stem Cells into Neuron-, Oligodendrocyte-, and Astrocyte-Committed Lineages. Prion, 8, 266-275.
https://doi.org/10.4161/pri.32079
[63]  Shi, F., et al. (2016) Cellular Prion Protein Promotes Neuronal Differentiation of Adipose-Derived Stem Cells by Upregulating miRNA-124. Journal of Molecular Neuroscience, 59, 48-55.
https://doi.org/10.1007/s12031-016-0733-8
[64]  Mouillet-Richard, S., et al. (2000) Signal Transduction through Prion Protein. Science, 289, 1925-1928.
https://doi.org/10.1126/science.289.5486.1925
[65]  Resenberge, U.K., Winklhofer, K.F. and Tatzelt, J. (2011) Neuroprotective and Neurotoxic Signaling by the Prion Protein. Topics in Current Chemistry, 305, 101-119.
https://doi.org/10.1007/128_2011_160
[66]  Liebert, A., Bicknell, B. and Adams, R. (2014) Prion Protein Signaling in the Nervous System—A Review and Perspective. Signal Transduction Insights, 3, 11-32.
https://doi.org/10.4137/STI.S12319
[67]  Maciejewski, A., et al. (2016) Domains of STIP1 Responsible for Regulating the PrPC-Dependent Amyloid-β Oligomer Toxicity. Biochemical Journal, 473, 2119-2130.
https://doi.org/10.1042/BCJ20160087
[68]  Xu, F., Karnaukhova, E. and Vostal, J.G. (2008) Human Cellular Prion Protein Interacts Directly with Clusterin Protein. Biochimica et Biophysica Acta, 1782, 615-620.
https://doi.org/10.1016/j.bbadis.2008.08.004
[69]  Cai, Y., et al. (2016) Interplay of Endoplasmic Reticulum Stress and Autophagy in Neurodegenerative Disorders. Autophagy, 12, 225-244.
https://doi.org/10.1080/15548627.2015.1121360
[70]  Gibbings, D., et al. (2012) Human Prion Protein Binds Argonaute and Promotes Accumulation of microRNA Effector Complexes. Nature Structural & Molecular Biology, 19, 517-524.
https://doi.org/10.1038/nsmb.2273
[71]  David, R. (2011) BAG6 & Mislocalized Proteins. Nature Reviews Molecular Cell Biology, 12, 550.
https://doi.org/10.1038/nrm3167
[72]  Das, J. and Yu, H. (2012) HINT: High-Quality Protein Interactomes and Their Applications in Understanding Human Disease. BMC Systems Biology, 6, 92.
https://doi.org/10.1186/1752-0509-6-92
[73]  Szklarczyk, D., et al. (2015) STRING v10: Protein–Protein Interaction Networks, Integrated over the Tree of Life. Nucleic Acids Research, 43, D447-D452.
https://doi.org/10.1093/nar/gku1003
[74]  Stark, C., et al. (2006) BioGRID: A General Repository for Interaction Datasets. Nucleic Acids Research, 34, D535-D539.
https://doi.org/10.1093/nar/gkj109
[75]  Keshava Prasad, T.S., et al. (2009) Human Protein Reference Database—2009 Update. Nucleic Acids Research, 37, D767-D772.
https://doi.org/10.1093/nar/gkn892
[76]  Chatr-aryamontri, A., et al. (2007) MINT: The Molecular INTeraction Database. Nucleic Acids Research, 35, D572-D574.
https://doi.org/10.1093/nar/gkl950
[77]  Peri, S., et al. (2003) Development of Human Protein Reference Database as an Initial Platform for Approaching Systems Biology in Humans. Genome Research, 13, 2363-2371.
https://doi.org/10.1101/gr.1680803
[78]  Warde-Farley, D., et al. (2010) The GeneMANIA Prediction Server: Biological Network Integration for Gene Prioritization and Predicting Gene Function. Nucleic Acids Research, 38, W214-W220.
https://doi.org/10.1093/nar/gkq537
[79]  Rolland, T., et al. (2014) A Proteome-Scale Map of the Human Interactome Network. Cell, 159, 1212-1226.
https://doi.org/10.1016/j.cell.2014.10.050
[80]  Kurschner, C. and Morgan, J.I. (1995) The Cellular Prion Protein (PrP) Selectively Binds to Bcl-2 in the Yeast Two-Hybrid System. Molecular Brain Research, 30, 165-168.
https://doi.org/10.1016/0169-328X(95)00013-I
[81]  Ferreiro, E., et al. (2007) Bcl-2 Overexpression Protects Against Amyloid-Beta and Prion Toxicity in GT1-7 Neural Cells. Journal of Alzheimer’s Disease, 12, 223-228.
https://doi.org/10.3233/JAD-2007-12303
[82]  Kralovicova, S., et al. (2009) The Effects of Prion Protein Expression on Metal Metabolism. Molecular and Cellular Neuroscience, 41, 135-147.
https://doi.org/10.1016/j.mcn.2009.02.002
[83]  Kaiser, D.M., et al. (2012) Amyloid Beta Precursor Protein and Prion Protein Have a Conserved Interaction Affecting Cell Adhesion and CNS Development. PLoS ONE, 7, e51305.
https://doi.org/10.1371/journal.pone.0051305
[84]  McHugh, P.C., et al. (2012) Prion Protein Expression Alters APP Cleavage without Interaction with BACE-1. Neurochemistry International, 61, 672-680.
https://doi.org/10.1016/j.neuint.2012.07.002
[85]  Bai, Y., et al. (2008) The in Vivo Brain Interactome of the Amyloid Precursor Protein. Molecular & Cellular Proteomics, 7, 15-34.
https://doi.org/10.1074/mcp.M700077-MCP200
[86]  Satoh, J., et al. (2008) Protein Microarray Analysis Identifies Human Cellular Prion Protein Interactors. Neuropathology and Applied Neurobiology, 35, 16-35.
https://doi.org/10.1111/j.1365-2990.2008.00947.x
[87]  Klamt, F., et al. (2001) Imbalance of Antioxidant Defense in Mice Lacking Cellular Prion Protein. Free Radical Biology & Medicine, 30, 1137-1144.
https://doi.org/10.1016/S0891-5849(01)00512-3
[88]  Spee, B., et al. (2006) Copper Metabolism and Oxidative Stress in Chronic Inflammatory and Cholestatic Liver Diseases in Dogs. Journal of Veterinary Internal Medicine, 20, 1085-1092.
https://doi.org/10.1111/j.1939-1676.2006.tb00706.x
[89]  Stetler, R.A., et al. (2010) Heat Shock Proteins: Cellular and Molecular Mechanisms in the CNS. Progress in Neurobiology, 92, 184-211.
https://doi.org/10.1016/j.pneurobio.2010.05.002
[90]  Kelly, P.N. and Strasser, A. (2011) The Role of Bcl-2 and Its Pro-Survival Relatives in Tumourigenesis and Cancer Therapy. Cell Death and Differentiation, 18, 1414-1424.
https://doi.org/10.1038/cdd.2011.17
[91]  Brown, D.R. and Besinger, A. (1998) Prion Protein Expression and Superoxide Dismutase Activity. Biochemical Journal, 334, 423-429.
https://doi.org/10.1042/bj3340423
[92]  Hutter, G., Heppner, F.L. and Aguzzi, A. (2003) No Superoxide Dismutase Activity of Cellular Prion Protein in Vivo. Biological Chemistry, 384, 1279-1285.
https://doi.org/10.1515/BC.2003.142
[93]  Jones, S., et al. (2005) Recombinant Prion Protein Does Not Possess SOD-1 Activity. Biochemical Journal, 392, 309-312.
https://doi.org/10.1042/BJ20051236
[94]  Choi, C.J., et al. (2006) Interaction of Metals with Prion Protein: Possible Role of Divalent Cations in the Pathogenesis of Prion Diseases. Neurotoxicology, 27, 777-787.
https://doi.org/10.1016/j.neuro.2006.06.004
[95]  Toni, M., Massimino, M.L., Griffoni, C., Salvato, B., Tomasi, V. and Spisni, E. (2005) Extracellular Copper Ions Regulate Cellular Prion Protein (PrPC) Expression and Metabolism in Neuronal Cells. FEBS Letters, 579, 741-744.
https://doi.org/10.1016/j.febslet.2004.12.053
[96]  Peggion, C., Bertoli, A. and Sorgato, M.C. (2017) Almost a Century of Prion Protein(s): From Pathology to Physiology, and Back to Pathology. Biochemical and Biophysical Research Communications, 483, 1148-1155.
https://doi.org/10.1016/j.bbrc.2016.07.118
[97]  Herms, J.W., Tings, T., Dunker, S. and Kretzschmar, H.A. (2001) Prion Protein Affects Ca2+-Activated K+ Currents in Cerebellar Purkinje Cells. Neurobiology of Disease, 8, 324-330.
https://doi.org/10.1006/nbdi.2000.0369
[98]  Korte, S., et al. (2003) Modulation of L-Type Voltage-Gated Calcium Channels by Recombinant Prion Protein. Journal of Neurochemistry, 87, 1037-1042.
https://doi.org/10.1046/j.1471-4159.2003.02080.x
[99]  Choi, D.K., Su Kim, I. and Do, J.H. (2014) Signaling Pathway Analysis of MPP+-Treated Human Neuroblastoma SH-SY5Y Cells. Biotechnology and Bioprocess Engineering, 19, 332-340.
https://doi.org/10.1007/s12257-013-0754-x
[100]  Macario, A.J. and Conway de Macario, E. (2005) Sick Chaperones, Cellular Stress, and Disease. New England Journal of Medicine, 353, 1489-1501.
https://doi.org/10.1056/NEJMra050111
[101]  Goold, R., McKinnon, C. and Tabrizi, S.J. (2015) Prion Degradation Pathways: Potential for Therapeutic Intervention. Molecular and Cellular Neurosciences, 66, 12-20.
https://doi.org/10.1016/j.mcn.2014.12.009
[102]  Hishiya, A. and Takayama, S. (2008) Molecular Chaperones as Regulators of Cell Death. Oncogene, 27, 6489-6506.
https://doi.org/10.1038/onc.2008.314
[103]  Proescher, J.B., Son, M., Elliott, J.L. and Culotta, V.C. (2008) Biological Effects of CCS in the Absence of SOD1 Enzyme Activation: Implications for Disease in a Mouse Model for ALS. Human Molecular Genetics, 17, 1728-1737.
https://doi.org/10.1093/hmg/ddn063
[104]  Aguzzi, A. and Calella, A.M. (2009) Prions: Protein Aggregation and Infectious Diseases. Physiological Reviews, 89, 1105-1152.
https://doi.org/10.1152/physrev.00006.2009
[105]  Brown, D.R. (2004) Role of the Prion Protein in Copper Turnover in Astrocytes. Neurobiology of Disease, 15, 534-543.
https://doi.org/10.1016/j.nbd.2003.11.009
[106]  Desai, V. and Kaler, S.G. (2008) Role of Copper in Human Neurological Disorders. American Journal of Clinical Nutrition, 88, 855s-858s.
https://doi.org/10.1093/ajcn/88.3.855S
[107]  Deriziotis, B. and Tabrizi, S.J. (2008) Prions and the Proteasome. Biochimica et Biophysica Acta, 1782, 713-722.
https://doi.org/10.1016/j.bbadis.2008.06.011
[108]  Yano, M., Koumoto, Y., Kanesaki, Y., Wu, X. and Kido, H. (2004) 20S Proteasome Prevents Aggregation of Heat-Denatured Proteins without PA700 Regulatory Subcomplex like a Molecular Chaperone. Biomacromolecules, 5, 1465-1469.
https://doi.org/10.1021/bm049957a
[109]  Rowland, L.P. and Shneider, N.A. (2001) Amyotrophic Lateral Sclerosis. New England Journal of Medicine, 344, 1688-1700.
https://doi.org/10.1056/NEJM200105313442207
[110]  Steele, A.D., Lindquist, S. and Aguzzi, A. (2007) The Prion Protein Knockout Mouse: A Phenotype under Challenge. Prion, 1, 83-93.
https://doi.org/10.4161/pri.1.2.4346
[111]  Winklhofer, K.F., Tatzelt, J. and Haass, C. (2008) The Two Faces of Protein Misfolding: Gain- and Loss-of-Function in Neurodegenerative Diseases. The EMBO Journal, 27, 336-349.
https://doi.org/10.1038/sj.emboj.7601930
[112]  Saccon, R.A., Bunton-Stasyshyn, R.K.A., Fisher, E.M.C. and Fratta, P. (2013) Is SOD1 Loss of Function Involved in Amyotrophic Lateral Sclerosis? Brain, 136, 2342-2358.
https://doi.org/10.1093/brain/awt097
[113]  Li, J., Wuliji, O., Li, W., Jiang, Z.G. and Ghanbari, H.A. (2013) Oxidative Stress and Neurodegenerative Disorders. International Journal of Molecular Sciences, 14, 24438-24475.
https://doi.org/10.3390/ijms141224438
[114]  Onodera, T., Sakudo, A., Tsubone, H. and Itohara, S. (2014) Review of Studies That Have Used Knockout Mice to Assess Normal Function of Prion Protein under Immunological or Pathophysiological Stress. Microbiology and Immunology, 58, 361-374.
https://doi.org/10.1111/1348-0421.12162
[115]  Freixes, M., et al. (2004) Clusterin Solubility and Aggregation in Creutzfeldt-Jakob Disease. Acta Neuropathologica, 108, 295-301.
https://doi.org/10.1007/s00401-004-0891-6
[116]  Ciechanover, A. and Kwon, Y.T. (2015) Degradation of Misfolded Proteins in Neurodegenerative Diseases: Therapeutic Targets and Strategies. Experimental and Molecular Medicine, 47, e147.
https://doi.org/10.1038/emm.2014.117
[117]  Hall, T.M. (2005) Structure and Function of Argonaute Proteins. Structure, 13, 1403-1408.
https://doi.org/10.1016/j.str.2005.08.005
[118]  Wilczynska, A. and Bushell, M. (2015) The Complexity of miRNA-Mediated Repression. Cell Death and Differentiation, 22, 22-33.
https://doi.org/10.1038/cdd.2014.112
[119]  Gibbings, D., et al. (2012) Human Prion Protein Binds Argonaute and Promotes Accumulation of microRNA Effector Complexes. Nature Structural & Molecular Biology, 19, 517-524.
https://doi.org/10.1038/nsmb.2273

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133