全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

单位球面中具有3个不同 Blaschke 特征值的 Blaschke 平行子流形
On the Blaschke Parallel Submanifolds in the Unit Sphere with Three Distinct Blaschke Eigenvalues

DOI: 10.16205/j.cnki.cama.2018.0023

Keywords: 平行 Blaschke 张量, 消失的 mo 形式, 常 数量曲率, 平行 平均曲率向量
Parallel Blaschke tensor
, Vanishing mo form, Constant scalar curvature, Parallel mean curvature vector

Full-Text   Cite this paper   Add to My Lib

Abstract:

Blaschke 张量 $A$ 是单位球面 $\bbs^n$中子流形的 \mo 微分几何的一个基本不变量, 而$A$的特征值称为 Blaschke 特征值. 作者研究了$\bbs^n$ 中 具有平行 Blaschke 张量的子流形(简称为 {Blaschke 平行子流形}). 主要结果是对 $\bbs^n$ 中具有3个不同 Blaschke 特征值 的 Blaschke 平行 子流形进行了完全的分类.
As is known, the Blaschke tensor $A$ (a symmetric covariant $2$-tensor) is one of the fundamental \mo invariants in the \mo differential geometry of submanifolds in the unit sphere $\bbs^n$, and the eigenvalues of $A$ are referred to as the Blaschke eigenvalues. This paper deals with the submanifolds in $\bbs^n$ with parallel Blaschke tensor which are called Blaschke parallel submanifolds. The main theorem of this paper is the classification of Blaschke parallel submanifolds in $\bbs^n$ with exactly three distinct Blaschke eigenvalues.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133