|
- 2017
Cn中F(p,q,s)型空间上的 Bergman型算子
|
Abstract:
设 $p>0$, $s\geq 0$, $q+s>-1$, $q+n>-1$. 讨论了{\bf C$^n$}中单位球上$F(p,q,s)$到本身或$A(p,q,s)$空间 到$L(p,q,s)$空间上的Bergman型算子的有界性条件.
\ \ Let $p>0$, $s\geq 0$, $q+s>-1$, $q+n>-1$. In the paper, the conditions of boundedness for the Bergman type operators on $F(p,q,s)$ space or from $A(p,q,s)$ space to $L(p,q,s)$ space are discussed on the unit ball in {\bf C$^n$}.