全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2017 

一种基于LDA主题模型的评论文本情感分类方法
Method of Sentiment Analysis for Comment Texts Based on LDA

DOI: 10.16337/j.1004-9037.2017.03.023

Keywords: 评论文本,情感单元,潜在主题,情感分析,机器学习
comment text
, sentiment unit, latent topic, sentiment analysis, machine learning

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对互联网出现的评论文本情感分析,引入潜在狄利克雷分布(Latent Dirichlet allocation,LDA)模型,提出一种分类方法。该分类方法结合情感词典,依据指定的情感单元搭配模式,提取情感信息,包括情感词和上、下文。使用主题模型发掘情感信息中的关键特征,并融入到情感向量空间中。最后利用机器学习分类算法,实现中文评论文本的情感分类。实验结果表明,提出的方法有效降低了特征向量的维度,并且在文本情感分类上有很好的效果。
A method of sentiment analysis for online comment texts is proposd based on the latent Dirichlet allocation (LDA) model. The method extracts the sentiment information containing sentiment words and context with the sentiment word dictionary according to the specified collocation patterns of sentiment unit. Use the LDA model to mine the key features of the sentiment information and then combine them into the sentiment vector space. The machine-learning algorithm is used to classify the sentiment polarity of Chinese comment texts. After experiment, the presented method is proved to be effective in reducing dimensionality and text sentiment classification.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133