全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2017 

基于粒子群算法优化支持向量机的岩爆预测研究
Prediction of Rock Burst by Improved Particle Swam Optimization-based Support Vector Machine

Keywords: 粒子群算法,支持向量机,参数优化,岩爆影响指标,岩爆预测

Full-Text   Cite this paper   Add to My Lib

Abstract:

摘要 由于地下工程的复杂性,岩爆的发生受到多种因素的影响,目前尚没有一种可靠的预测方法来对其进行预报,进而有针对性地进行工程灾害的风险控制。笔者提出将应力强度比(σθ/σc)、脆性系数(σc/σt)和弹性能量指数(Wet)作为影响岩爆的主要指标,并根据粒子群优化算法的参数选取和收敛速度快的优势及支持向量机的小样本、高维度、非线性的特性,提出了用粒子群优化算法对影响支持向量机分类性能的两个主要参数进行优化,进而获得优化的支持向量机分类器。利用PSO-SVM对在建二广九标茅田界隧道深埋变质砂岩岩爆发生情况进行预测,定量地判断该标段不存在岩爆现象,预测结果与茅田界隧道的实际情况基本相符。

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133