|
- 2018
高轴压比下复式钢管混凝土柱?哺至毫?接节点抗震性能试验
|
Abstract:
为了研究高轴压比下复式钢管混凝土柱?哺至毫?接节点的抗震性能,按照现行规范设计了3个强柱弱梁型复式钢管混凝土外环板节点试件,进行了低周往复加载试验,研究其在高轴压比下的破坏形态、承载能力、变形能力以及耗能能力等。结果表明:增加水平环板的宽度可以有效提高节点的延性;锚固腹板加肋可以增加梁柱连接节点的初始刚度,增强节点的整体性,从而提高节点的承载能力和耗能能力;节点试件的破坏表现为钢梁翼缘首先发生屈服,随着水平荷载加大,试件同时出现梁端塑性铰和柱端塑性铰的破坏形态,锚固腹板加肋和水平环板加宽的试件在加载后期出现明显的柱端压弯破坏,各节点核心区应力较小,基本处于弹性阶段,因此高轴压比下复式钢管混凝土柱?哺至毫?接节点可实现强节点要求,但不能满足“强柱弱梁”的抗震设防要求。
In order to study the seismic performance of the joint between composite concrete??filled steel tubular (CFST) column and steel beam under high axial compression ratio, three composite CFST external stiffening ring joint specimens followed by existing codes were designed and the quasi-static test was conducted. The failure mode, bearing capacity, deformability and energy dissipation capacity of the specimens under high axial compression ratio were studied. The results show that the ductility of joint can be improved by widening the width of external stiffening ring, and the initial stiffness of beam-column joint can be improved by adding ribs to the plate, then the integration is enhanced, both the bearing capacity and energy consumption capacity are improved. The failure of the joint starts from the yielding of beam flange and plastic hinges occur on both beam end and column end with the increasing load, but it is evident for specimens with anchored web stiffeners ribbed and specimens with widening the width of external stiffening ring to be buckling at the column ends in the latter loading. The stress is small in core zone and in elastic stage. So the beam-column joint under high axial compression ratio can satisfy the principle of strong joints, but it is unable to meet the requirements of “strong column and weak beam” for seismic resistance